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Abstract
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is para- doxical, because plants cannot photosynthesise or flower during dormant periods. We test ecologi- cal and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maxi- mum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of  dor- mancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.
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INTRODUCTION
Many herbaceous perennial plant species renew their above- ground parts annually, using resources accumulated during previous growing seasons, and stored in belowground peren- nating structures such as bulbs and rhizomes. Although it is widely   believed   that   all   herbaceous   perennials   produce

aboveground parts every year, detailed studies  have  shown that many plants in a large number of species from many families do not (Lesica & Steele 1994; Shefferson 2009; Rein- tal et al.  2010).  In  these  species,  plants  that  fail  to  emerge aboveground may reappear after ≥ 1 year of subterranean existence, and some plants cycle irregularly between years with and  without  aboveground  parts.  The  temporary  absence  of
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aboveground growth for one or more years is known as vege- tative dormancy, or prolonged dormancy (hereafter, ‘dor- mancy’) (Lesica & Steele 1994; Shefferson 2009). In this study, we present the first detailed analysis of the causes, eco- logical functions and evolutionary significance of dormancy, using data from published studies in which it has been recorded.
Previous attempts to understand dormancy have used case studies of individual populations or species to infer its biology across all dormancy-prone species. This approach implies that the causes and functions of dormancy are similar wherever it occurs. However, the mean proportion of plants in dormancy in any year, duration of  dormancy  and  transition  rates between dormancy and other life states, vary widely across space, time, populations and species (Kull & Tuulik 1994; Shefferson & Tali 2007; Brys et al. 2011). If dormancy evolved once in plant evolutionary history, it might be driven by similar factors in all or most species in which it occurs, whereas if it evolved numerous times, the driving mechanisms would probably differ depending on the genetic and evolu- tionary contexts on each occasion. Because most literature on dormancy assumes that its basis is the same across all plant taxa, we examine the prediction that dormancy has a common origin early in the evolution of herbaceous perennials (the common background hypothesis).
Dormancy appears paradoxical, because dormant plants forego reproduction and often suffer higher mortality  risk than sprouting plants (Shefferson et al. 2014).  However, depending on the costs and benefits associated with dormancy vs. sprouting (i.e. seasonal re-emergence from a perennating organ), natural selection can contribute to maintaining dor- mancy. Two major, mutually non-exclusive hypotheses have been proposed to explain this: certain life-history costs con- tribute to the evolutionary maintenance of dormancy (the trade-off hypothesis), and dormancy reduces the negative impacts of environmental stress and variation on fitness (the environmental stress hypothesis). We propose the following predictions about dormancy across the plant  kingdom, derived from these hypotheses: (1) dormancy should be associ- ated with life-history  costs (the life-history  cost prediction),
(2) longer lifespan makes dormancy more adaptive (the lifes- pan prediction), (3) dormancy is more strongly expressed in species utilising non-photosynthesis-based carbon sources (the nutritional mode prediction), (4) commonly experienced weather cues promote dormancy (the common weather predic- tion) and (5) greater environmental stress at higher latitudes creates a latitudinal gradient of dormancy (the latitudinal gra- dient prediction). In addition, the common background hypothesis predicts that: 6) dormancy evolved once, early in plant evolutionary history (the single origin prediction). The basis for these hypotheses and predictions is explained below.
Life-history costs are indirect negative effects on traits such as survival and reproduction, caused by optimising other traits (Stearns & Magwene 2003). These costs are often caused by pat- terns of allocation of scarce resources or by pleiotropy, and manifested as negative correlations between life-history traits (de Jong & van Noordwijk 1992). Some life-history costs will be evolutionary drivers of dormancy if they adversely affect sprouting plant fitness, for example by reducing future survival,

sprouting or flowering. If, for example sprouting in a particular year were associated with a high risk of herbivory, or if rapid growth caused significant loss of limited resources, remaining dormant might be adaptive (Shefferson et al. 2014). The trade- off hypothesis suggests that dormancy-prone species should exhibit strong fitness-related costs caused especially by sprout- ing and growth (this does not preclude some trade-offs making dormancy less adaptive, as might happen if dormancy itself is associated with future increases in mortality or lower fecun- dity). Thus, we predict that dormancy-prone species exhibit life- history costs, and that dormancy is associated most strongly with certain life-history costs, most notably sprouting costs (the life-history cost prediction).
The impact of these trade-offs would be expected to depend on lifespan and nutritional mode. Lifespan may selectively influence dormancy because short-lived species have fewer opportunities to sprout and reproduce than long-lived species. Similarly, low dormancy costs might select for longer lifespan if sprouting costs are high, because longer lifespan provides more opportunities for reproduction. In one view of classical life-his- tory theory, such effects can also stem from sprouting interact- ing with a trade-off between survival and reproduction, where low or unpredictable recruitment favours long lifespans with more dormancy, whereas high recruitment favours short lifes- pans with less dormancy (Stearns 1976). We therefore predict that foregoing reproduction through dormancy will be less adaptive, or even maladaptive, in short-lived vs. long-lived spe- cies (the lifespan prediction). Trade-offs might also be strong in mycoheterotrophs (achlorophyllous plants acquiring all their carbon from mycorrhizal fungi), because limitation of carbon from the mycorrhizal associate would impose a strong physio- logical cost on sprouting (Bruns et al. 2002; Shefferson et al. 2016). Mixotrophs (green species acquiring carbon from both mycorrhizal fungi and photosynthesis) may suffer intermediate carbon limitation relative to mycoheterotrophs and autotrophs (Selosse & Roy 2009; Merckx 2013). Thus, mycoheterotrophs should be more dormancy-prone than photosynthetic species (the nutritional mode prediction).
The environmental stress hypothesis proposes that temporal environmental variation causes sprouting to impose fitness costs. These might be triggered by disturbance or suboptimal growth conditions caused by factors such as weather, her- bivory, drought and disease, increasing mortality or reducing reproduction. Several studies have shown that the proportion of dormant plants in a  population  in any  year is  correlated with local weather conditions prior to, or during, the growing season (Shefferson et al. 2001; Miller et al. 2004; Hutchings 2010). Thus, common cues such as rainfall  or  temperature may determine the extent of dormancy (the common weather prediction). Furthermore, if abiotic stress is greater at higher latitudes, for example due to harsher winters and stronger fluctuations in weather during the growing season (Normand et al. 2009), or because of lower evapotranspiration or lower incoming solar radiation (Whittaker et al. 2007), dormancy would be predicted to increase with latitude (the latitudinal gradient prediction). At its extreme, the environmental stress hypothesis suggests that dormancy may be a ‘bet-hedging trait’, reducing short-term fitness while raising lifetime fitness by   avoiding   risks   associated   with   sprouting   in   highly





unfavourable years (Shefferson 2009; Gremer et al. 2012), as also proposed for seed and bud dormancy (Cohen 1966; Nils- son et al. 1996; Childs et al. 2010).
In this study, we test the hypotheses and predictions pre- sented above. A wide range of data was collated on all herba- ceous perennial species in which dormancy has been documented. We examine the relationships between the pro- portion of dormant plants in populations, the duration of dormancy and the life-historical properties of populations and the environmental contexts under which they were observed. For life-historical properties, we examined the effects on dor- mancy of perennating structure, nutritional mode, life-history costs and evolutionary history. For environmental factors, we assessed the impacts on dormancy of the latitude and geo- graphical locations of populations, climate and herbivory.


MATERIALS  AND  METHODS
Data set development
We examined the ecological and evolutionary contexts of dor- mancy by creating a data set including a large number of characteristics about dormancy from every relevant literature source available, supplemented with demographic data from published and unpublished sources, and subjecting it to statis- tical and phylogenetic analyses. Here, we summarise the devel- opment of this data set (hereafter, ‘main data set’; full details in Supplemental Methods,  and  characteristics of the species and populations in Supplemental Results).
First, we conducted a Google Scholar literature search for published data on dormancy, using several relevant search terms (details in Supplemental Methods). Next, we analysed individual-level demographic data sets to increase the statistical power to address questions about dormancy. From these data sets, we assessed relationships between vital rates (probabilities of survival, sprouting, size transitions, flowering and fruiting), and numbers of flowers and fruits produced, and characteristics including size, sprouting status (sprouting vs. dormant), flower- ing status (flowering vs. not flowering), individual life history and year. Among these relationships, trade-offs were identified as significant negative slopes associated with size, sprouting, flowering or fruiting in either of the previous 2 years vs. sur- vival, sprouting, flowering or fruiting in the current year. Costs of reproduction, costs of sprouting, costs of growth, costs of size and costs of dormancy were noted as binomial variables in the main data set. All these analyses were performed as gener- alised linear mixed models (GLMMs) compared with AICc using the packages lme4 (Bates, Maechler & Bolker 2015) and MuMIn (Barton' 2014) in R 3.4.1 (R Core Team 2017). Infer- ence proceeded via the best-fit model and equally parsimonious models (ΔAICc ≤ 2.0), and via Akaike weights for each inde- pendent factor summed across all models, which relate the strength of a factor from 0 (no support) to 1.0 (complete sup- port) (Burnham & Anderson 2002).
Next, for each population in  each year,  the GLMMs obtained were used to create either high-resolution historical (3 year) population projection matrices, or standard ahistori- cal (2 year) matrices when years of data were too limited for construction   of   historical   matrices.   Historical   population

projection matrices are second-order matrix models, in which transition probabilities represent the probability that an indi- vidual in state i in year t-1 and state j in year t transitions to state k in year t + 1 (Ehrl'en 2000). In ahistorical matrix mod- els, transition values represent the probability that an individ- ual in state j in year t transitions to state k in  year  t + 1 (Ehrl'en 2000). Projection matrices were used to estimate the mean life expectancy, or average time to death from germina- tion, of individual plants (Tuljapurkar & Horvitz 2006; Stei- ner et al. 2012), which was used to examine the influence of lifespan on dormancy.
Finally, we estimated the mean proportion of plants in each population that were dormant each year as the complement of the resighting probability estimated by Cormack-Jolly-Seber mark–recapture modelling in program MARK (White & Burnham 1999; Shefferson et al. 2001). We also determined the frequency distribution of the duration  of dormancy epi- sodes per population, and median and maximum durations. These metrics were incorporated into our main data set, together with metrics describing the studies and study sites.

Phylogenetic analyses: testing the common background hypothesis
We conducted a phylogenetic analysis to infer a hypothetical evolutionary history for dormancy, and to assess whether it exhibits phylogenetic signal (i.e. the tendency for more closely related species to share more similar trait values, Cadotte & Davies 2016). First, we developed a phylogenetic tree of the 114 species known to exhibit dormancy, based on the Open Tree of Life (Hinchliff et al. 2015) using package rotl (Michonneau et al. 2016) for R (R Core Team 2017). We also included all 261 herbaceous plant species included in the COMPADRE data- base for which detailed demographic studies provide no evi- dence of dormancy (Salguero-Go'mez et al. 2015). The original publications were examined for each of these species, to confirm that dormancy had not been recorded. Onto this tree we plotted maximum recorded values per species for mean proportion of dormant plants and for maximum duration of dormancy (see Statistical analyses below), and used the resulting character evo- lution reconstructions to test the common background hypoth- esis and the single origin prediction. We reconstructed ancestral character states via maximum likelihood with the R package phytools (Revell 2012).
We hypothesised that the capacity for dormancy would yield significant phylogenetic signal if dormancy is constrained by a common genetic background, whereas lack of phyloge- netic signal would suggest macroevolutionary lability and/or strong environmental determination of trait values. We anal- ysed phylogenetic signal in both metrics (i.e. mean proportion and maximum duration) using Blomberg’s K and bootstrap- ping to determine significance in R package picante (Kembel et al. 2010) for R (R Core Team 2017). See Supplemental Methods for further details.

Statistical analyses: tests of the trade-off and environmental stress hypotheses
The linear models, matrices and derived metrics described above, were used to construct the main data set. We analysed





this data set for evidence of the effects of different life-histori- cal characteristics within each population on the mean pro- portion of plants that were dormant, and maximum duration (years) of dormancy. Although mean or median values might be considered better measures of duration of dormancy, they were rarely reported. Data on maximum duration of dor- mancy were available from approximately twice as many stud- ies as data on median length of dormancy.
We tested the trade-off hypothesis and environmental stress hypothesis by analysing the impacts of life history and environ- mental variables on dormancy across populations. First, we explored the types and frequencies of trade-offs across dor- mancy-prone species, to identify the most common trade-offs. Then, we created two global GLMMs differing only in response term: the first included the logit-transformed mean proportion of plants in dormancy in each population (normally dis- tributed). The second included the maximum duration of dor- mancy observed in each population (Poisson distributed). Fixed factors tested in both models were one geographical vari- able (absolute latitude for each population’s location), two environmental variables (mean annual precipitation and mean annual temperature throughout the years of each  study, obtained from the nearest weather station to the site), five bio- logical variables (nutritional mode [source of carbon nutrition: autotroph, mixotroph or mycoheterotroph], perennating struc- ture [form of rootstock persisting across years: rhizome, tap- root, corm, bulb or tuber], mean life expectancy [years] and any reproductive and sprouting costs [binomial]), and two study description variables (length of study [years] and number of plants recorded). Species was included as a random factor in both models. We also included geography more fully by creat- ing sets of models in which either continent, or longitude varying linearly within continent, was included as a random factor. Significant relationships with biological variables, par- ticularly with costs of sprouting or reproduction, would be evi- dence supporting the trade-off hypothesis and the life-history cost prediction, and significant relationships with geographical and environmental variables would support the environmental stress hypothesis. These models were developed using the lme4 package (Bates et al. 2015) for  R (R Core Team 2017), as before. Although herbivory might be an important driver of dormancy, few studies reported on it, preventing its inclusion in the main mixed models.
We also compared factors associated with high vs. low mean proportions of plants in dormancy (defined, respec- tively, as having means of >20% and ≤10% of plants dormant per population), and long vs. short maximum dormancy dura- tions (defined as >3 and ≤2 years respectively), to illustrate more simply life-history characteristics associated with differ- ent levels of dormancy, and as additional tests of the trade-off hypothesis and lifespan prediction. Category limits were cho- sen to clearly separate high vs. low levels of dormancy, while preserving statistical power. Populations with values between these categories were omitted from the analysis, leaving 128 and 163 populations (66 and 98 species) available for the anal- ysis of proportions and durations of  dormancy  respectively. We predicted that populations with short dormancy duration would exhibit short mean life expectancy and high incidence of  sprouting,  growth  and  reproductive  costs,  whereas  the

opposite would be true of populations with long dormancy duration.
To examine the role of trade-offs further, we also assessed the impacts of different factors on costs of reproduction, sprouting, growth and dormancy, using GLMMS  as  before. The same fixed and random factors were included, together with the presence of costs themselves. Because testing the lifespan prediction requires  an  understanding  of  the  drivers of lifespan, we also examined the relationships between mean life expectancy and the same fixed  and  random  fac- tors, excluding mean life expectancy itself, using GLMMs as before.
Dormancy has  been widely  reported in  terrestrial orchids. This may reflect more demographic data having been amassed for Orchidaceae than  for other plant families  (Reintal et al. 2010). To examine whether orchids behave differently from other families, we repeated all of the mixed modelling described above, first with only the Orchidaceae species in our data set, and then with only non-orchids.


RESULTS
Phylogenetic analyses and the common background hypothesis
Maximum duration of dormancy  and mean proportion  of dormant plants varied strongly across plant families (Fig- ure S1). Ancestral state reconstructions of maximum duration dormant and mean proportion dormant suggested complex evolution with a minimum of, respectively, 22 gains with 32 losses and 18 gains with 20 losses (Figure S2). In both cases, the most recent common ancestor of the ferns and the angios- perms also appears to be dormancy-prone. We found no evidence of phylogenetic signal in either dormancy metric (pro- portion:  K = 0.245  vs.  Krandom = 0.153 ± 0.004,  P = 0.928;
duration: K = 0.192 vs. Krandom = 0.153 ± 0.005, P = 0.908).

Trade-offs and life history
There was strong support for dormancy being driven by trade-offs (i.e. significant negative correlations between life- history traits).  Some  form  of life-history  cost was  found in 193 of 236 (81.8%) populations for which trade-off data were available, and in 94% of the 81 species with data available to test for the presence of at least one cost. 51.3% of popula- tions exhibited reproductive costs, 58.1% exhibited costs of sprouting and 27.1% exhibited costs of growth. Costs of reproduction most commonly involved costs to future size (25.0%), and least commonly involved  costs  to  fruiting (8.1%). Sprouting most commonly exerted costs upon survival (49.6%), seen as increased mortality in any of the following 2 years. It affected future fruiting in only 5.5% of cases. Costs of growth most commonly affected survival (19.5%), and least commonly affected sprouting (2.5%). Intriguingly, 35.2% of all populations exhibited a life-history cost associated with large size, most often expressed through lower future survival (25.0% of cases), or decreased flowering (23.7%). 68.2% of populations also exhibited some cost of dormancy, typically expressed as a cost to future sprouting (48.7% of cases) or flowering (36.9%).





Trade-offs were most often influenced by latitude and annual precipitation, and by sample size and study duration (Table S2). Reproductive costs were more common in popula- tions from higher latitudes, in those experiencing lower precip- itation, and in studies involving more plants (Table S3). Sprouting costs were more common at lower latitudes, under lower precipitation, in mycoheterotrophs and in longer studies recording more plants (Table S4). Some models that were as parsimonious as the best-fit model suggested that such costs were more common in shorter lived species (Tables S2 and S4). Growth costs were most common in rhizomatous species and least common in taprooted species, and more common at lower latitudes and under lower precipitation (Table S5). Costs of both growth and dormancy were more common in longer studies (Tables S5 and S7). Costs of large size were more common at higher latitudes, under lower precipitation, in short-lived species, and in shorter studies (Table S6). Finally, studies of ≥ 10 years duration were twice as likely as studies of ≤5 years to reveal historical costs of sprouting on survival (0.114 ± 0.031 vs. 0.059 ± 0.029 respectively).
Populations with high mean proportions of dormant plants had significantly lower mean life expectancies than popula- tions with  low  mean  proportions  dormant  (t73.7  = - 4.264, P < 0.0001), contradicting the lifespan prediction. These pop- ulations were significantly more likely to exhibit costs of sprouting (t107.7 = 2.499, P = 0.014), but not costs of reproduction (t94.9 = 0.324,  P = 0.747)  or  size  (t75.9  = 1.873, P = 0.065) (Figure 1a–d). Counterintuitively, populations with longer maximum dormancy duration also had significantly shorter mean life expectancies than those with shorter dormancy (t65.3 = - 2.430, P = 0.018), and were more likely to exhibit costs of sprouting (t104.7  = 3.186,  P = 0.002)  and size  (t105.1  = 2.797,  P = 0.006),   but   not   reproduction (t114.3  = 0.857, P = 0.393) (Figure 1e–h).

The best-fit mixed model of mean life expectancy indicated significant influences of type of perennating structure, nutri- tional mode, costs of sprouting and study duration, although the last parameter was not included in some models that were as parsimonious as the best-fit model (Tables S2 and S8). The longest life expectancies were found in rhizomatous, auto- trophic species with no sprouting or reproductive costs (the longest estimated mean life expectancy was 522 years in Caladenia orientalis [Orchidaceae], and the longest estimated mean life expectancy for a non-orchid species was 169 years in Lathyrus vernus [Fabaceae]). Shortest mean life expectancies were in mycoheterotrophic species with sprouting costs. Study duration had a small but significant impact on mean life expectancy (+ 0.160 ± 0.057 years per year of study), suggest- ing that study length affects matrix-estimated life-history traits (Figure S3; Table S8).

Life historical and environmental drivers of dormancy
Our best-fit mixed model of the mean proportion of dormant individuals included significant effects of sprouting costs, nutritional mode and perennating structure, with  the  latter two factors not occurring in some equally parsimonious mod- els (Table S9). In particular, the mean proportion of dormant plants was lowest in mixotrophs, and highest in myco- heterotrophs (Figure 2a). Mean proportion of dormant plants was also lower in taprooted  than  rhizomatous  species  (Fig- ure 2b). Species with sprouting costs also had higher propor- tions of dormant plants (Figure 2; Table S9).
Our best-fit model of maximum duration of dormancy included significant effects  of study  length, sprouting  costs, type of perennating structure, precipitation and absolute lati- tude, with the latter two factors absent in some models that were  as  parsimonious  as  the  best-fit  model  (Tables  S2  and
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Figure 1 Life-history characteristics of populations with high vs. low mean proportions of plants in dormancy (a–d), and short vs. long maximum dormancy lengths (e-h). Characteristics shown are mean life expectancy (a, e), probability of sprouting costs (b, f), probability of reproductive costs (c, g) and probability of size costs (d, h). Means ± 1 SE and t-test P values are shown.
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Figure 2 Mean proportions of plants dormant per population as a function of nutritional mode (a) and perennating structure (b). In (b), corm refers to plants with corms, bulbs or tubers. Means ± 1 SE are shown.



S10). Rhizomatous species had the longest maximum dor- mancy values, whereas those with corms or bulbs had the shortest. On average, species with sprouting costs had maxi- mum duration of dormancy roughly twice that of species without (Figure 3). Higher precipitation was associated with lower maximum duration of dormancy (Figure 3a). Across all populations and species, the relationship between maximum duration of dormancy and absolute latitude was negative (Figure 3b). Maximum observed dormancy duration also increased by 0.217 ± 0.017 years per year  of  study (Figure 3c).
With few exceptions (see Supplemental Results), the results of mixed model analyses of mean life expectancy, mean pro- portion dormant and maximum duration of dormancy were robust when repeated with either orchids or non-orchids excluded from the analyses.
Impacts of herbivory or defoliation on future dormancy were reported in 37 of 39 populations from 13 studies. In 35 of these populations involving nine species (Castilleja mollis, Cephalanthera longifolia, Cleistesiopsis bifaria, Cypripedium calceolus,   Cypripedium   reginae,   Dactylorhiza   lapponica,

Lathyrus vernus, Solidago missouriensis, Trillium grandiflorum), a higher proportion of plants were dormant in years following severe herbivory or defoliation. Herbivory was associated with increased sprouting in only one population, of Liparis loeselii.


DISCUSSION
Diverse backgrounds
Phylogenetic analyses showed that dormancy has evolved numerous times, refuting the common background hypothesis and the single origin prediction. Although this result suggests that dormancy has probably proved adaptive under many ecological circumstances, we also identified common drivers of dormancy in the form of life-history costs and environmental interactions, suggesting that it may evolve repeatedly in response to common evolutionary and genetic contexts. Although data on this subject are not available, the frequency with which dormancy has evolved suggests that it can be achieved with only a small number of mutations at few loci. For  example  if  dormancy  were  linked  in  some  clades  to
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Figure 3 Maximum observed length of dormancy as a function of (a) mean total annual precipitation occurring at the study sites, (b) latitude at which studies were carried out and (c) study length in years. No distinction is made between latitude in the Northern and Southern Hemispheres. Points represent actual values from individual populations, and lines represent the relationship given using the best-fit mixed model explaining maximum observed duration of dormancy. Solid line indicates trends in maximum dormancy duration with no sprouting costs, whereas the dashed line indicates trends in maximum dormancy duration with sprouting costs.





climatic stress caused by strong seasonality, its evolution in those clades might be rooted in mutations at loci involved in the physiological breaking of winter dormancy. The genes responsible might be those involved in the ABA-signalling pathway (Footitt et al. 2011), or in the growth of vegetative rhizomes, the latter of which are also engaged in the expres- sion of winter dormancy (Paterson et al. 1995).
Mycoheterotrophy is also associated with an effect on the mean annual proportion of plants in dormancy. Carbon pro- visioning from mycorrhizal fungi makes sprouting largely superfluous except for the purpose of flowering (Shefferson et al. 2016). Some of the structural carbon in the perennating structures of mixotrophs is also provided by fungi (Roy et al. 2013), whereas growth of the shoot is mainly supported by photosynthesis (Gonneau et al. 2014). Since mixotrophy and mycoheterotrophy have evolved in at least three plant families (Ericaceae, Ophioglossaceae, Orchidaceae), dormancy and mycoheterotrophy may have  common  evolutionary  contexts, at least within these clades. In the case of some Cephalanthera species included in our analyses, the presence of green and albino phenotypes associated with different mycorrhizal hosts supports this evolutionary link (Julou et al. 2005; Roy et al. 2013).

Life-history  relationships
We found strong evidence of certain life-history costs, particu- larly costs of sprouting, being associated with higher levels of dormancy (the trade-off hypothesis and the life-history cost prediction). While none of the trade-offs examined (costs of flowering, fruiting, sprouting, growth, size and dormancy itself) was significant in all populations, almost every popula- tion exhibited at least one trade-off. Populations with higher mean proportions of plants in dormancy, and longer  maxi- mum durations of dormancy, were more likely to exhibit costs of sprouting (Figures 2 and 3). Furthermore, myco- heterotrophic species had higher mean proportions of dor- mant plants than autotrophic or  mixotrophic  species, supporting the nutritional mode prediction (Figure 2a).
Although greater growth and larger size are often consid- ered indicators of higher fitness (Salguero-Go'mez & Casper 2010), this study showed that they were associated in many species with lower probabilities of future sprouting and sur- vival respectively. Since our analyses separated the effects of size from those of reproduction, the significant  effects observed are unlikely to have been a reflection of reproduc- tion being a costly activity occurring only in larger plants. Instead, large size and greater growth appear to inflict costs beyond the physiological impacts of previous reproduction (Bierzychudek 1982). One possible explanation is that species displaying such costs, for example Asarum arifolium (Aris- tolochiaceae) and Corallorhiza odontorhiza (mycoheterotrophic Orchidaceae), exhibit strong evidence of senescence; large plants are old plants, subject to higher mortality risk. Alterna- tively, the trade-offs documented may be stronger when envi- ronmental conditions deteriorate severely, causing plants that invest in growth under good conditions to suffer increased mortality risk due to usage rather than storage of resources that subsequently become limiting (Shefferson & Roach 2010).

Shorter lived species were more likely to exhibit dormancy than longer lived species, refuting the lifespan prediction, and also more likely to exhibit sprouting costs. Possible causes could include a need to allocate resources to sprouting, even in very unfavourable years, to reproduce at all, or lower investment in storage. If dormancy is indeed an adaptive response to stress (Shefferson et al. 2005), short-lived species have depleted resource pools more often than longer lived spe- cies, due to previous sprouting and growth, increasing their probabilities of dormancy and mortality. This interpretation is supported by our finding that costs of large size are more common in shorter lived species, implying a higher probability of exhausting resources on aboveground growth to reproduce.

Environmental stress
Support for the hypothesis that environmental stress results in greater dormancy was equivocal. Maximum dormancy dura- tion was negatively correlated with annual precipitation (the common weather prediction), although the influence of this factor was weaker than those of sprouting costs and perennat- ing structure (Table S2). Other evidence supported an impact of biotic, rather than abiotic, stress. For example most studies providing data on herbivory or defoliation demonstrated that both increase dormancy levels (e.g. Ehrl'en 2003; Knight 2003; McEachern et al. 2009). Some previous studies have suggested that herbivory  may  be the primary driver  of dormancy (Tamm 1972; Gregg 2011).
Contrary to our prediction that latitudinal gradients in abi- otic environmental stress should result in greater dormancy at higher latitude, maximum dormancy duration decreased with increasing latitude. If longer dormancy indicates stress, this suggests that low-latitude environments are somehow more stressful. This could be explained by stronger biotic interac- tions nearer the equator (Schemske et al. 2009). For example the negative impacts of higher conspecific density, including stronger competition and increased exposure  to  pathogens, are strongest in the tropics (LaManna et al. 2017), as is the impact of  herbivory (Zhang  et al. 2016). It  is also possible that climate-dependent life-history costs contribute to or cre-
ate the latitudinal gradient that we observed (Sletvold & A0gren 2015). Such impacts may explain why costs of sprout-
ing and growth are also more common at lower latitudes, as these trade-offs may be stronger with greater competition or herbivory.

Future research and conclusions
Our search for drivers of dormancy was limited in ways that suggest a need for  further  research. First,  our  interpretation of life-history costs is based on a broad definition of trade- offs that includes any mechanisms yielding negative correla- tions, including physiological constraints and negative genetic correlations, linked gene expression, correlated selection and indirect relationships driven by factors yielding opposite pat- terns in unrelated  traits  (Bell  &  Kofopanou  1986;  Reznick et al. 2000; Knops et al. 2007). Second, although we found evidence that weather and climate drive dormancy, we acknowledge  that  it  may  depend  more  strongly  on  annual






variation in weather (K'ery et al. 2005; Smith et al. 2005), rather than mean weather variables. Third, mixotrophy  has only recently been subjected to rigorous study, and it is possi- ble that some species we treated as autotrophs are actually mixotrophs (Selosse & Roy 2009). Finally, treating all above- ground absences as instances of dormancy may overestimate its frequency if it includes cases where sprouting occurred but the sprout had perished before detection (Tamm 1972; Gregg 2011). Although many studies used in our analyses, particu- larly the larger ones, were designed to minimise imperfect detection of individuals that sprouted, some may have been less successful in this regard.
We found widespread evidence that sprouting costs pro- moted dormancy, for environmental influences on dormancy, and for multiple evolutionary origins affecting patterns of dormancy in different clades. However, the mechanisms trig- gering dormancy are still not understood (Gregg 2011). The sprouting behaviour of plants within populations depends on factors including size, age, life stage, genetic background and microclimate (Lacey 1986; J€ak€al€aniemi et al. 2011). We and others have reported different impacts of temperature, precipi- tation and herbivory on dormancy in different species (K'ery
& Gregg 2004; Miller et al. 2004; Light & MacConaill 2006; Hutchings 2010), and that closely related dormancy-prone species can respond differently to the same climatic variables (Shefferson et al. 2017). The mechanisms  behind these  pat- terns should be subject to further study. The possible role of biotic interactions such as herbivory and competition in caus- ing stronger manifestations of dormancy,  particularly  nearer the equator, also should be examined.
This study has demonstrated the importance of life-history costs and environmental factors as drivers of dormancy wher- ever it is found. Trade-offs were identified that drive the life- history evolution of many herbaceous perennials, the most notable of which were costs of sprouting  and  growth,  and their relationships with nutritional mode. We observed com- plex but common relationships with environmental  factors, and also with latitude, that require further inquiry. We also demonstrated hitherto unidentified impacts of study length on life-history metrics. These outcomes suggest productive ave- nues for further research, including detailed studies of life-his- tory evolution in herbaceous plant species, the ecology, genetics and physiology behind its expression, and the urgent need for longer term demographic studies.
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