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[bookmark: Abstract]Abstract
Tracking devices are increasingly used to monitor individual movement patterns continuously and in high resolution. How- ever, carrying a device could potentially compromise an individual’s physiology or behaviour, thereby making tracking data unreliable for detailed behavioural measurements. To this end, we assessed the possible consequences of the application of GPS devices on offspring development in an opportunistic seabird species, the lesser black-backed gull (Larus fuscus), by comparing the growth and survival of nestlings of which none, one or both parents were equipped with a GPS device. We found that the developmental trajectories of the nestlings were not affected, and there were no differences in skeletal size and body mass at the fledging stage. A lack of negative effects on offspring development strongly suggests that the parental behaviour, and thus likely the foraging behaviour, did not differ between tagged and non-tagged individuals. The evidence that GPS data can be used to reliably study parental care, as well as other aspects of the bird’s behaviour, opens up new pos- sibilities to study behavioural and evolutionary ecological questions in ever-increasing resolution.





[bookmark: Introduction]Introduction

Recent technological advances facilitated the continuous improvement of avian-tracking devices allowing the study of individual movement patterns in ever-increasing detail (Vardanis et al. 2011; Shamoun-Baranes et al. 2012; Patrick and Weimerskirch 2014). The emergence of cutting-edge tracking devices caused great leaps in the study of movement ecology in the past couple of decades, thereby increasing our knowledge about the global space-use of wide-ranging birds




(Sokolov 2011). Nowadays, several state-of-the-art tracking devices, ranging from light-weight, short range transmitters to heavier, long-life satellite transmitters are available for this purpose (reviewed in: Klaassen and Reneerkens 2014). The application of such cutting-edge tracking devices not only facilitated a significant progress in the field of migra- tion (Berthold et al. 2002; Croxall et al. 2005), but also offered new opportunities in the study of optimal foraging (Patrick et al. 2015), navigation (Orchan et al. 2016), and conservation (Costa et al. 2012).
Despite the advantages of the application of tracking systems, carrying a tracking device could potentially

 		have deleterious eff	on an individual’s physiology
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or behaviour (see e.g. Phillips et al. 2003; Barron et al. 2010), even when manufactured and attached in a way that should minimise adverse eff     Minimising the device eff  is not only important for ethical reasons, but it is also essential when aiming to collect data that are rep- resentative of an organism’s natural behaviour. Whether the data is representative may not necessarily become evident from tracking data when these are not compared to data collected from non-tagged control groups. Hence, the underlying assumption that tagged individuals behave naturally often remains untested. To add to the level of complexity, deleterious eff are likely to vary among species and devices (Ropert-Coudert et al. 2007; Thaxter





et al. 2016; Vandenabeele et al. 2011). Along this line, some studies found no deleterious eff from carrying tracking devices (Hernández et al. 2004; Davis et al. 2008; Lamb et al. 2016), while others showed a reduction in body mass (Irvine et al. 2007) or an increased mortality rate (Dixon et al. 2016) (but for a comprehensive over- view see Barron et al. 2010). However, even in the absence of direct survival effects, more subtle eff ts on behav- ioural components (such as foraging; Phillips et al. 2003) or metabolic costs and energetics (Godfrey et al. 2003) might be present. Increased foraging costs resulting from carrying tracking devices might be highest during paren- tal care, when the foraging eff t is at its maximum (e.g. Shaff  et al. 2003), and could thereby aff  parental care and thus reproductive success when birds are tracked dur- ing the breeding period. The examination of the potential eff on breeding success (e.g. chick growth, off ing survival along with clutch mass and laying date in the year following deployment of a GPS device) may thus form a test case for analysing harmful side eff of carrying a device, which may act via changes in foraging behaviour (Beaulieu et al. 2009; Kidawa et al. 2012; Robinson and Jones 2014). But the studies focussing on these eff    on off ing development show contrasting results (for exam- ple, see for no eff Agnew et al. (2013) and Sergio et al. (2015) vs. an eff in Ackerman et al. (2004) and Whid- den et al. (2007)), making it diffi to fi any general patterns across species.
While gulls are among the most commonly tracked sea- birds (Ceia et al. 2014; Corman and Garthe 2014; Cam- phuysen et al. 2015; Thaxter et al. 2015; Isaksson et al. 2016; Rock et al. 2016; Stienen et al. 2016; Shaff et al. 2017), data on the eff of GPS devices on breeding per- formance are, as of yet, inconclusive. Thaxter et al. (2016) did not fi   a negative eff   on nestling survival and col- ony attendance in lesser-backed gulls (Larus fuscus), but off     ing development was not monitored until fl
Camphuysen (2011) showed the pronounced daily fl - tuations in body mass of nestlings of which one parent carried a GPS device, but this was not statistically tested. However, even when no direct eff    on nestling survival are detected, susceptible traits such as nestling growth may still be aff
The aim of this study was to assess potential negative effects of the application of GPS tracking devices on paren- tal care through the study of offspring growth and survival. We monitored the growth and survival of nestling lesser black-backed gulls that were raised by parents of which either none, one or both individuals were carrying a GPS device. We cross-fostered eggs shortly before hatching using eggs of similar size. So we synchronised hatching thereby preventing growth and survival differences due to hatching asynchrony. Via cross-fostering, we could also standardise

brood size (2 nestlings), chick quality, and match laying dates of tagged and untagged pairs.


[bookmark: Methods]Methods

[bookmark: Fieldwork_and_bird_instrumentation]Fieldwork and bird instrumentation

This study was carried out in the colonies of the industrial ports Vlissingen-Oost, the Netherlands (51°27′N, 3°42′E) and Zeebrugge, Belgium (51°20′N, 3°10′E) that host, respectively, ± 4500 and ± 1500 ground-breeding pairs (Fig. 1). Adult lesser black-backed gulls were captured in Vlissingen-Oost (n = 9) and Zeebrugge (n = 10) between 14 May and 31 May 2016. All individuals were captured on the nest with a wire mesh walk-in cage trap in the second or third week of incubation. UvA-BiTS GPS devices were attached to the birds using a Teflon wing harness, weigh- ing combined approximately 2.3% of the bird’s body mass [61 × 25 × 10 mm, 13.5 g (+ 5 g harness), for more detailed information on the UvA-BiTS GPS devices see Bouten et al. 2013; for wing harness attachment see Thaxter et al. 2014]. Data can be retrieved remotely, allowing us to follow indi- viduals over consecutive years. In 16 nests, only one of the parents was tagged, and in three nests, double-tagged pairs were created by tagging the partners of individuals that had already been deployed with a GPS device in the previous year.
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[bookmark: _bookmark0]Fig. 1 Kernel density distribution of the GPS tagged lesser black- backed gulls in Vlissingen-Oost (red)  and  Zeebrugge  (blue)  dur- ing the chick rearing period. Location of the breeding colonies are marked with a circle (Vlissingen-Oost) and a triangle (Zeebrugge)



[bookmark: _GoBack]The colonies were visited every 2–3 days, and nests were monitored from the moment of egg laying. Newly laid eggs were marked by writing the date on the egg shell with a black, non-toxic marker, which also allowed us to identify the laying order. We replaced the eggs in each nest by two pipping eggs from two different donor nests at the moment of hatching, the timing of which was estimated based on the laying dates of the respective clutches. Concurrently, we selected nests of unringed pairs in the vicinity of the GPS nests with similar laying date to function as control nests, which also received two unrelated pipping eggs (Vlissingen- Oost n = 15; Zeebrugge n = 9). The eggs were cross-fostered to reduce the biasing effect of variables not related to GPS devices, such as genetic and phenotypic quality eff on offspring development. It also allowed us to synchronise hatching and prevent growth and survival diff ences due to hatching asynchrony. Through the cross-foster design we could also ensure that all parents experienced the same offspring demand by standardising the brood size with two nestlings. Chicken wire enclosures were built around each GPS and control nest (circa 2 × 2 m in size, and 0.3 m high) to ensure that the nestlings stayed close to the nest for the entire nestling period, and PVC tubes were added to pro- vide shelter. On the hatching day, nestlings were individually marked with coloured tape and down feathers were collected for molecular sexing. Off ing development (body mass, tarsus length) was measured every 2–3 days until day 30 and nestling mortality was recorded during each visit.

[bookmark: Statistical_analysis]Statistical analysis

All statistical analyses were performed in R (R Core Devel- opment Team 2016). Nestling growth was modelled with a logistic function: Wt= A∕1 + e(K(1 − t)) in which Wtis the body mass at time t (g), t is the nestling age (days), A is the asymp- totic mass (g), K is the growth rate constant, and I is the inflection point of the growth curve (days) (for more details see Sofaer et al. 2013). The “nlme’’ R package (Pinheiro et al. 2018) was used to build nonlinear mixed effect models. Growth data represent repeated measurements for each individual nestling, excluding the individuals that died too early so that their growth function could not be fi	In addition, nestlings within the same nest receive parental care from the same parents and are therefore not independent from each other. Both levels of statistical dependence were accounted for by including nestling ID nested in nest ID as random eff	in all models. Additionally, colony was included as a random effect to account for potential among-
colony variation in growth (nest ID nested in colony ID).
In a fi t analysis, we included ‘gps’ [number of GPS devices per couple; 0 (n = 24), 1 (n = 16), 2 (n = 3)] and nestling sex [male nestlings [Vlissingen-Oost (= vl) n = 20, Zeebrugge (= zb) n = 21 or female nestlings (vl n = 20, zb

n = 12)] as fi ed eff  In a second analysis, we com- bined nests with one and two GPS devices and referred to this as ‘treatment’ (number of nestlings with GPS tagged parent (vl n = 15, zb n = 18) or control parents (vl n = 25, zb n = 15). This allowed us to include the interaction between treatment and sex, which was not possible in the fi t model due to lack of variation in nestling sex within the double-tagged GPS nests. Stepwise backward elimina- tion using log-likelihood ratio (LR) tests was performed to obtain p values.
Body condition index was calculated for the last meas- urement before fl	(day 28 ± 1) by dividing body mass by skeletal growth (i.e. tarsus length) to correct for a possible correlation between body mass and body size. Body condition and tarsus length at fledging were analysed with linear mixed models using the “lme4’’ R package (Bates et al. 2015). These models included ‘gps’ (0, 1, 2) and ‘sex’ (female, male) as fi ed eff      Nest ID nested in colony ID was included as random eff A Pearson’s Chi-squared test was used to compare the number of nest- lings that survived until fl		between control and GPS pairs, excluding nestlings that died during or right after hatching, because their mortality was unlikely related to the provisioning of the parents, but rather a consequence of diffi	during hatching.



[bookmark: Results]Results

[bookmark: Effects_on_early_development]Effects on early development

Carrying a GPS device did not have a signifi    eff    on the growth trajectory of the nestlings. Nestlings that were reared by parents of which none, one or both were carry- ing a GPS device did not diff  in their growth parameters A, I, K (Tables 1, 2). Nestling data of both GPS groups were subsequently pooled and compared with control nests for a statically more powerful analysis, e.g. with respect to interactions. In addition, there was no eff of GPS devices on tarsus length (F2,40.09 = 1.72, p = 0.19), or body condition (F2,68.08 = 0.46, p = 0.63) at the moment of fl
There was a signifi   sex eff    on asymptotic body mass (Fig. 2) and infl ction point (Table 1), and the tar- sus length (F1,63.92 = 53.75, p < 0.001) and body condition index (F1,70.09 = 7.86, p = 0.01) at the moment of fl
Males were heavier (asymptotic body mass 778.4 ± 20.3 g), larger (tarsus length 64.7 ± 0.5 mm), and in better body con- dition (11.5.5 ± 0.7) than females (asymptotic body mass
660.3 ± 17.7 g; tarsus length 59.6 ± 0.6 mm; body condition index 10.8 ± 0.7) (Fig. 3). There was no significant interac- tion between sex and treatment (Table 1).


[bookmark: _bookmark1]Table 1 Outcome of the nonlinear mixed effect models, summaris- ing all fixed effects from the first analysis (model 1: gps: 0, 1, 2; sex: male, female) and the second analysis with the GPS groups pooled (model 2: treatment: control, GPS; sex: male, female) on the growth parameters (asymptote A, inflection point I, growth constant K)

 (
parameters
1
A
gps
1.267894
0.53
I
gps
3.558161
0.17
K
gps
4.025455
0.14
A
Sex
25.7476
<
 
0.0001*
I
Sex
3.846712
0.05*
K
Sex
0.9289894
0.34
2
A
Treatment:sex
0.2632467
0.61
I
Treatment:sex
1.400607
0.24
K
Treatment:sex
0.05445519
0.82
A
Treatment
0.8245793
0.37
I
Treatment
0.1505484
0.70
K
Treatment
0.6659029
0.41
A
Sex
28.84547
<
 
0.0001*
I
Sex
3.966338
0.05*
K
Sex
0.7825131
0.38
)Model	Growth























*Statistical significance

Fixed effects	LR	p value



[bookmark: _bookmark2]Table 2 Parameter estimates (± SE) of the null model including ‘gps’ and ‘sex’ as fixed effects

Growth param- eters

Fixed effects	Value	SE




A	Intercept	676.44	21.50
gps 0	–	–
gps 1	− 30.14	28.32
gps 2	+ 4.73	61.35
Female	–	–
Male	+ 111.67	21.86
I	Intercept	14.29	0.43
gps 0	–	–
gps 1	-0.51	0.61
gps 2	+1.92	1.26
Female	–	–
Male	+ 0.31	0.31
K	Intercept	0.18	0.01
gps 0	–	–
gps 1	+ 0.01	0.01



















[bookmark: _bookmark3]Fig. 2 Mean (± SE) body mass of nestlings with tagged parents (closed symbols) or control parents (open symbols) according to age, plotted for females and males separately



[bookmark: Effects_on_survival] (
gps
 2
−
 
0.03
0.01
Female
–
–
Male
+
 
0.01
0.01
)Effects on survival

Mortality rates did not significantly differ between control and GPS nestlings (χ2(1) = 0.02, p = 0.89). A total of 4 out of 44 (9.1%) control nestlings did not survive up to day 30, while 2 out of 35 (5.7%) GPS nestlings died.
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[bookmark: _bookmark4]Fig. 3 Median (thick horizontal line), 50% range (box) and range (whiskers) of tarsus length at the moment of fledging for nestlings from male (M) and female (F) control (non-tagged) parents (light grey) and tagged parents (dark grey)


[bookmark: Discussion]Discussion

In this study, we investigated whether the application of GPS tracking devices has negative effects on early offspring development and survival in lesser black-backed gulls. Such a reduction in off ing quality could occur when parents deployed with a GPS device are impaired in their foraging behaviour which in turn limits their parental rearing abili- ties. However, we did not find any negative effects on nest- ling growth or on body measurements and body condition at fledging. The lack of difference in offspring development between our three different groups [single-tagged, double- tagged (albeit small sample size) and control pairs] suggests that parental feeding behaviour did not differ between tagged and non-tagged individuals. This implies there is likely no harmful effect of carrying the GPS device on the foraging behaviour. A handicap for foraging behaviour induced by the GPS attachment should be most apparent during the period of chick rearing, as parents have to collect food not only for themselves, but also for their offspring. The period of chick rearing is thus a very demanding phase that may place par- ents at their limits.
The lack of negative eff for the off ing of GPS tagged parents is in line with two earlier studies on lesser black-backed gulls that also did not find a negative impact of GPS devices on nestling growth and survival (Camphuysen 2011; Thaxter et al. 2016). However, the effects in these ear- lier studies were inconclusive as offspring growth and sur- vival was not consistently monitored throughout the entire

nestling period. In this study, we meticulously measured offspring development and survival while controlling for potentially biasing effects of brood size and laying date and taking off ing sex into account. Still, all growth param- eters as well as the size and mass at fledging were similar in nestlings of single-tagged, double-tagged and control pairs. The only parameter affecting nestling growth was offspring sex. Males obtained a higher asymptotic body mass than females, which can be ascribed to the development of the sexual size dimorphism in lesser black-backed gulls (Grif- fiths 1992). As in most Laridae, this dimorphism becomes more evident towards the end of the nestling period, as males reach a higher asymptotic mass (Jordi and Arizaga 2016). In accordance with Thaxter et al. (2016) and Camphuysen (2011), we did not find an effect of GPS attachment on nest- ling survival either.
Earlier studies could not exclude compensatory parental effort by the non-tagged partner, interpreting a GPS device as a handicap (reviewed in Harrison et al. 2009). When only a single parent is tagged, its non-tagged partner may com- pensate for the reduced levels of parental care by the former (Harrison et al. 2009), thereby masking potential negative consequences of GPS tracking (Paredes et al. 2005). In this study, we included for the first time, breeding pairs of which both partners carried a GPS device. Unfortunately, this was a small sample size, also because of the time it takes to create such couples, as only one pair member was tagged per breeding season, and ideally the effect of this should be further explored with a larger sample. Simultaneously track- ing both parents amplified the potential impacts on offspring development while excluding partner compensation. Under this combined treatment, we did not detect negative effects on off ing growth or survival either. Still, annual varia- tion in environmental conditions, such as weather (Newell et al. 2015; Sicurella et al. 2015), habitat quality (Kaiser et al. 2015) or food abundance (Steigerwald et al. 2015) could modulate GPS device eff on off pring develop- ment. These aspects should be considered, as they could change how parents allocate their resources. While our study was conducted during 1 year only, we studied breeding suc- cess in two different colonies in which individuals vary in habitat use, and preliminary analyses of the GPS data show that tagged individuals diff ed in foraging specialisation, using marine, terrestrial and anthropogenic resources. Some foraging strategies might be energetically costlier than oth- ers, and this could mean that marine specialists that have to spend more time flying (Camphuysen et al. 2015) could be aff    by the device to a greater extent than individuals that are waiting for human waste in urban environments. Further research on the costs of different foraging strategies would therefore be valuable.
Finally, a negative eff ct of GPS tagging on parental behaviour may not become evident if tagged parents invest



less in self-maintenance, thereby impairing future reproduc- tion, while keeping the investment in current offspring high. However, a meta-analysis by Barron et al. (2010) showed that tagged birds do not sacrifice self-feeding in favour of off pring feeding, or vice versa. Such absence of a trade- off in our study species is further supported by life history theory where long-lived species are predicted to prioritise survival over reproductive success in a given year (Wil- liams 1966; Drent and Daan 1980). If parents carrying a GPS device would sacrifi	self-maintenance in favour of offspring survival, this could affect their survival probabil- ity and future reproductive investment in subsequent years. Unfortunately, the colony in Zeebrugge was disturbed by construction work and individuals could therefore not return to their familiar breeding spot, so that we are unable to test for long-term negative effects of the GPS devices on future reproductive investment and adult survival. However, other studies that used the same UvA-BiTS GPS devices found similar over-winter survival in tagged and non-tagged lesser black-backed gulls (Camphuysen 2011; Thaxter et al. 2016). Our results are in compliance with other studies on large seabirds (gannets (Morus bassanus) (Hamer et al. 2000), European shags (Phalacrocorax aristotelis) (Daunt et al. 2006), fi	no eff	of attached devices. Phillips et al. (2003) found no eff	of satellite tag deployment on trip duration, meal mass or breeding success in black-browed (Thalassarche melanophris) and grey-headed (T. chrysos- toma) albatrosses. A comparison between studies of alba- trosses and petrels suggests that deleterious effects are pre- dominantly present when the transmitter exceeded 3% of the body mass of the tagged individual, which was not the case in our study. However, Bodey et al. (2017) and Van- denabeele et al. (2011) show that other aspects such as the shape of the device could have a much stronger eff	on energy expenditure. Some species may be more vulnerable to tagging, e.g. when carrying a tracking device, diving spe- cies might encounter complications with their insulation or
experience increased drag (Bannasch et al. 1994).


[bookmark: Implications_for_future_work]Implications for future work

Taken together, this is hitherto the most fi	study on potential negative fitness effects of GPS tracking. Carry- ing GPS devices did not have negative effects on offspring development or survival in lesser black-backed gulls. We are therefore confident that GPS data can be used to reli- ably study parental care in very high resolution. This opens new possibilities to study the important behavioural and evolutionary ecological questions such as in the context of (sex differences in) the costs of parental care, the resolution of evolutionary confl    of interest, parental cooperation, or the evolution of bi-parental care. However, long-lasting

eff of GPS tracking have still been studied too little, which certainly requires further attention. Furthermore, it has to be stressed that our conclusions are limited to this particular attachment method and species only, as the behav- iour and ecology of a species are important facets that need to be considered in each case before implementing track- ing systems. It is therefore of importance that researchers keep studying and reporting potential effects on behaviour or fitness for each particular species. All of this will help to optimise tracking methods whenever possible or necessary.
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