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An important issue in ecohydrological research is distribution modelling, aiming at the 
prediction of species or vegetation type occurrence on the basis of empirical relations 
with hydrological or hydrogeochemical habitat conditions. In this study, two statistical 
techniques are evaluated: (i) the widely used multiple logistic regression technique in the 
generalized linear modelling framework, and (ii) a recently developed machine learning 
technique called ‘random forests’. The latter is an ensemble learning technique that gen- 
erates many classification  trees and aggregates the individual results. The two different 
techniques are used to develop distribution models to predict the vegetation type occur- 
rence of 11 groundwater-dependent vegetation types in Belgian lowland valley ecosystems 
based on spatially distributed measurements of environmental conditions. The spatially dis- 
tributed data set under investigation consists of 1705 grid cells covering an area of 47.32 ha. 
After model construction and calibration, both models are applied to independent test data 
sets using two-fold cross-validation and resulting probabilities of occurrence are used to 
predict vegetation type distributions within the study area. Predicted vegetation types are 
compared with observations, and the McNemar test indicates an overall better performance 
of the random forest model at the 0.001 significance level. Comparison of the modelling 
results for each individual vegetation type separately by means of the F-measure, which 
combines precision and recall, also reveals better predictions by the random forest model. 
Inspection of the probabilities of occurrence of the different vegetation types for each grid 
cell demonstrates that correct predictions in central areas of homogeneous vegetation sites 
are based on high probabilities, whereas the confidence decreases towards the margins of 
these areas. Threshold-independent evaluation of the model accuracy by means of the area 
under the receiver operating characteristic (ROC) curves confirms good performances of both 
models, but with higher values for the random forest model. Therefore, the incorporation 
of the random forest technique in distribution models has the ability to lead to better model 
performances. 

 

 
 

 

1. Introduction 
 

Over the last decades, wetlands have lost their reputation 
of worthless land, and are now recognized as valuable areas 
(Mitsch and Gosselink, 2000a). Wetlands fulfil ecological, 
economical, protective and recreational functions, of which 
biodiversity conservation, water quality enhancement, and 
flood control are some examples (e.g. Gosselink and Turner, 
1978; Kadlec and Knight, 1996; Mitsch and Gosselink, 2000b). 
Among the enormous variety of wetland types (Wheeler, 1999), 
this study focuses on lowland river ecosystems. They har- 
bour a large part of biodiversity of the western European 
lowlands because of small-scale habitat diversification as a 
consequence of micro-topography, soil differences and differ- 
ences in water sources, i.e. atmospheric water, groundwater, 
and river water (Wassen and Barendregt, 1992; De Becker et al., 
1999; Bio et al., 2002). However, considerable losses of biodiver- 

sity in these valley ecosystems occur, mainly caused by high 
levels of N-deposition, groundwater abstraction, prevention of 
river flooding, agricultural drainage, application of fertilizers, 
and pollution of groundwater and surface water by sewage 
(Dé camps et al., 1988; Schot and Molenaar, 1992; Erisman and 
Draaijers, 1992; Hellberg, 1995; Runhaar et al., 1996; all cited in 
Bio et al., 2002). 

Ecohydrology tries to describe the hydrological mech- 
anisms (like water availability and quality) that underlie 
ecological patterns and processes (Rodriguez-Iturbe, 2000). 



 
 

describing the abiotic environment, were related with a 
bino- mial response variable, i.e. the occurrence 
(presence/absence) of vegetation types. The modelling 
techniques used were (i) multiple logistic regression (MLR) 
and (ii) random forest (RF). Multiple logistic regression in 
the generalized linear mod- elling framework has proven 
its applicability in ecological modelling in various studies 
(Guisan and Zimmerman, 2000; Austin, 2002; Stephenson et 
al., 2006). In GLMs, predictive vari- ables are related to the 
response variable through a linear link function. Because of 
the binomial nature of the response vari- able of the data set 
a multiple logistic regression model (MLR) was used to 
describe the relationship between a combination of 

environmental predictive variables and the response vari- 
able. The second technique, random forest, is an ensemble 
learning technique, developed by Breiman (2001). Ensemble 
learning techniques generate many classifiers and aggregate 
their results (Liaw and Wiener, 2002). A random forest consists 
of a compilation of classification or regression trees (e.g. 1000 
trees in a single random forest), and is empirically proven to 
be better than its individual members (Hamza and Larocque, 
2005). This study only focuses on classification trees, since the 
response variable of the data set under investigation was the 
occurrence (presence/absence) of vegetation types. As with 
ordinary classification trees, each tree of the random forest 
assigns a class (here a vegetation type) to each measurement 
vector of environmental predictive variables. A majority vote 
over all trees in the forest defines the resulting response class. 

Within this scientific discipline, modelling is an important    
issue. Several empirical models for the prediction of plant 
species and vegetation type occurrence in relation to hydro- 
logical or hydrogeochemical habitat conditions have been  
developed (Venterink and Wassen, 1997; Ertsen et al., 1998). 
The models presented by Venterink and Wassen (1997) dif- 
fer in scale level, habitat and ecosystem for which prediction 
was made, number of input variables, and expert knowledge 
and field measurements required. However, the relationship 
between response variable (e.g. the occurrence of species or 
vegetation types) and one or more explanatory variables (e.g. 
water table depth and water quality variables) was generally 
specified by a regression model (Bio et al., 1998). Ordinary 
multiple regression models and multiple logistic regression 
models within the frameworks of generalized linear models 
(GLM; McCullagh and Nelder, 1999) and generalized additive 
models (GAM; Hastie and Tibshirani, 1990; Yee and Mitchell, 
1991) are very popular and are often used for modelling 
species distributions (Guisan and Zimmerman, 2000; Augustin  
et al., 2001; Austin, 2002; Engler et al., 2004; Rushton et al., 
2004; Segurado and Araujo, 2004). Other predictive distribu- 
tion models include neural networks (e.g. Fitzgerald, 1992; 
Recknagel, 2001); ordination (e.g. canonical correspondence 
analysis CCA; Hill, 1973) and classification methods (e.g. clas- 
sification and regression trees; Breiman et al., 1984), Bayesian 
models (e.g. Fischer, 1990), environmental envelopes (e.g. Box, 
1992) or even combinations of these models (Guisan and 
Zimmerman, 2000). 

The objective of this study was to evaluate two dif- 
ferent statistical techniques in a predictive ecohydrological 
modelling context. Therefore, a spatially distributed ecohy- 
drological data set was used where 14 independent variables, 

2. Material and methods 
 

2.1. Study sites 
 

2.1.1. Data collection and site description 
A data set collected from four sites (Zwarte Beek, Vorsdonk- 
bos, Doode Bemde and Snoekengracht, Fig. 1) in different 
lowland river valleys in Flanders, the northern part of Bel- 
gium, was applied in this study (see also Bio et al., 2002). 
All sites are nature reserves with relatively undisturbed and 
unspoiled  abiotic  and  biotic  conditions,  a  long  period  of 
constant management (at least 10 years), and marked hydro- 
logical gradients. Data was collected in the period 1993–1997. 

The Zwarte Beek site is situated at the western fringe of 
the Campinian plateau. It comprises an 800  m long section 
through a narrow valley, situated at approximately 52–56 m 
above sea level. Zwarte Beek is known for its excellent fen 
grasslands (mainly Caricion curto-nigrae). The soil consists of 

 
 

 
 

Fig. 1 – Location of the study sites in Flanders (northern 
Belgium). 



a 7 m thick peat layer, with an abrupt conversion into sandy 
sediments at the fringes of the valley. The area is fed by nutri- 
ent and mineral-poor seepage water (ca. 16 mm day−1). The 
groundwater table is constant and close to the surface level 
throughout the year (De Becker and Huybrechts, 2000a). 

The Vorsdonkbos site is located at the southern fringe of 
the Demer river valley, approximately 11 m above sea level. 
This site is a marked seepage zone fed by two distinct aquifers. 
The southern part is supplied with mineral-poor groundwater 
(20 mm day−1). Here, a zone with fragments of fen grasslands 
(Caricion curto-nigrae and Cirsio–Molinietum) and oligotrophic 
woodland (Sphagno–Alnetum) is found. In the central and 
northern part of Vorsdonkbos, which is fed by mineral-rich 
groundwater, the vegetation changes to tall herb fen (Filipen- 
dulion) and mesotrophic alder carr (Caricion elongatae–Alnetum 
glutinosae) (Huybrechts and De Becker, 2000). 

The Doode Bemde is an alluvial floodplain mire in the 
valley of the river Dijle, situated at approximately 30 m 
above sea level. Its soil texture is mainly loam. The area is 
fed by mineral-rich groundwater (approximately 3 mm day−1). 
Here, a complete vegetation mosaic is found, ranging from 
mesotrophic alder carr and reedbeds (Phragmitetalia), over tall 
sedge swamps (Magnocaricion) and tall herb fen, to fen meadow 
and somewhat drier Arrhenatherion grasslands on the natural 
levees of the river (De Becker and Huybrechts, 2000b). 

The Snoekengracht, situated approximately 57 m above sea 
level, is similar to the Doode Bemde site, except for a narrower 
valley and even more mineral-rich seepage water feeding the 
area (Huybrechts and De Becker, 1999). 

 
2.1.2. Abiotic site characterization 
The study sites were subdivided in regular 20 m ×20 m grid 
cells (10 m × 10 m grid cells for Snoekengracht). Soil type 
was derived from hand drillings at grid cell intersections to 
a depth of 1 m, classified using a set of four major texture 
types: sand, loam, clay and peat, and assigned to the neigh- 
bouring grid cells. Management regime was classified per grid 
cell into six categories: (i) yearly mowing in early summer; 
(ii) cyclic mowing, once every 5–10 years; (iii) null manage- 
ment (no mowing are other management regime for at least 
the last 10 years); (iv) transition from yearly to cyclic mowing; 
(v) transition from yearly mowing to no management; and (vi) 
transition from cyclic mowing to no management. Groundwa- 
ter level and quality was determined from samples collected 
from a piezometer network. Groundwater level was described 
by one variable: average groundwater depth (m). Groundwater 
depth samples were taken every 2 weeks in a 2-year period 
between 1993 and 1997. Groundwater quality variables were 
determined from groundwater samples taken during four dif- 
ferent sampling campaigns in spring and autumn over two 
consecutive years within the period 1993–1997 and included 
groundwater pH, K+ (mg L−1), Fe(tot) (mg L−1), Mg2+ (mg L−1), 

was restricted to about 85 mainly groundwater-dependent 
species. For each grid cell, species dominances and abun- 
dances were estimated using a decimal scale (Londo, 1976). 
Species cover data were used to define vegetation types for 
all study sites separately using TWINSPAN (Hill, 1979). Eleven 
clearly defined vegetation types were retained of which a short 
description is given in Table 1. Their spatial distribution is 
demonstrated in Fig. 2. 

 
2.2. The ecohydrological data set 

 
The groundwater quality variables measured at the piezome- 
ter point locations were spatially interpolated using block 
kriging (for details, see Bio et al., 2002; Huybrechts et al., 
2002) in order to obtain groundwater variable estimates for 
all 1705 grid cells. Together with the other abiotic and biotic 
variables, groundwater quality variables were transferred to 
a data set. The data set contains 1705 measurement vectors 
xi = (xi1, x i2 , . . . ,  xi14 ) constituted of the values of 14 predic- 
tive variables (12 numerical and 2 categorical), describing the 
abiotic environmental conditions. Eleven different vegetation 
types c 1 , . . . ,  c11 are considered (Table 1). To each measurement 
vector xi a unique vegetation type li is assigned. This data set 
will be referred to as ‘ecohydrological data set’ and is denoted 
as (N = 1705): 

 
L = {(x1, l1 ) ,. .. , (xN, lN)}. (1) 

 
2.3. Statistical model description 

 
To meet the objective, i.e. to evaluate the random forest tech- 
nique in a predictive ecohydrological modelling context, a 
widely used statistical modelling technique was selected for 
comparison. The choice for the multiple logistic regression 
technique was based on the binomial nature of the response 
variable in the ecohydrological data set, which is appropri- 
ate for analysis with this technique (Guisan and Zimmerman, 
2000). Furthermore, the technique was used in earlier mod- 
elling studies for valley ecosystems in Flanders (Bio et al., 2002; 
Huybrechts et al., 2002) on the same ecohydrological data set. 

 
2.3.1. Multiple logistic regression 
Multiple logistic regression describes the relationship between 
a combination of environmental predictive variables and a 
binary response variable by means of a link function (Hosmer 
and Lemeshow, 2000). Consider a collection of p independent 
predictive variables denoted by the vector x = (x1, x2 , . . . ,  xp). 
Let the conditional probability that the outcome is ‘present’ 
be denoted by P(Y = 1|x) = n(x) and the link function by g(x), 
then (Hosmer and Lemeshow, 2000): 

 
eg(x) 

Ca2+  (mg L−1), SO42+  (mg L−1), Cl−  (mg L−1), NO3−-N (mg L−1), 
NH4+-N (mg L−1), H2PO4−  (mg L−1) and the ionic ratio (IR = 
100[1/2Ca2+]/[1/2Ca2+  + Cl−]). 

n(x) =  
 

1 + eg(x) 
. (2) 

 
2.1.3.    Biotic site characterization 
During spring and early summer, in the period 1993–1997, 
plant species were mapped in the study sites on the same reg- 
ular grid as soil texture and management regime. Mapping 

The logit[n(x)] is used as link function in multiple logistic 
regression because of the binomial nature of the response 
variable. The link function g(x) is given by 

 
g(x) = ˇ0 + ̌ 1x1 + ̌ 2x2 +· · · + ̌ pxp = logit[n(x)]. (3) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If some of the predictive variables are categorical (e.g. soil 
type and management in the ecohydrological data set), it is 
inappropriate to include them in the model as such. In that 
case a collection of design variables (or dummy variables) is 
to be used. In general, if a categorical predictive variable has 
k possible values, k − 1 design variables are needed. When, 
for example, the jth predictive variable is soil type with four 
possible texture classes sand, loam, clay or peat, three design 
variables are necessary. 

The link function for a GLM with p environmental predic- 
tive variables and the jth predictive variable being categorical 
would be ⎛

kj−1  
⎞ 

g(x) = ̌ 0 + ̌ 1x1 + · · ·  + ⎝
\
ˇjlDjl⎠ + · · ·  + ̌ pxp = logit[n(x)], 

l=1 

(4) 

where Djl are the values of kj − 1 design variables. 
An estimator ĝ (x) for the logit function has to be found 

for each vegetation type separately, in order to get an esti- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
mation of the probability of occurrence n̂ (x) according to Eq. 
(2). Multiple logistic regression models were built using the 
S-plus statistical software. A full model, including first-order 
terms and quadratic variable terms (not included in Eqs. (3) 
and (4)), was fitted to the data using the likelihood function. 
Afterwards, stepwise insertion or deletion of variables was 
applied (Hosmer and Lemeshow, 2000). A bi-directional step- 
wise model selection procedure was used, starting with the 
full model and alternately omitting and re-introducing one 
model component at each step. Selection stopped when no 
predictive variable insertion or deletion caused a lower Akaike 
Information Criterion value (AIC, Akaike, 1974), resulting in 
the model with the lowest AIC value. 

 
2.3.2.   Random forests 
The random forest technique (Breiman, 2001) is an ensemble 
learning technique which generates many classification trees 
(Breiman et al., 1984) that are aggregated to compute a classifi- 
cation. A necessary and sufficient condition for an ensemble of 
classification trees to be more accurate than any of its individ- 

Table 1 – Summary of the vegetation types: number, name, short description and area 

No. Name Short description Area (ha) (number of grid cells) 

ZB 6.80 
(170) 

VB 12.80 
(320) 

DB 20.76 
(519) 

SG 6.69 
(696) 

1 Alno–Padion 
 
 

2 Arrhenatherion  elatioris 
 
 
 
 

3 Calthion palustris 
 
 
 

4 Carici elongatae–Alnetum 
glutinosae 

 
 

5 Caricion curto-nigrae 
 
 

6 Cirsio–Molinietum 
 
 

7 Filipendulion 
 
 

8 Magnocaricion 
 

9 Magnocaricion with 
Phragmites 

10 Phragmitetalia 
 

11 Sphagno–Alnetum 

Drier forest type with Quercus robur L., 
Fraxinus excelsior L., Carpinus betulus L. and 
some Alnus glutinosa (L.) Gaertn. 
High yield potential pasture, 
characteristic  species  include 
Arrhenatherum elatius (L.) J.&C. Presl., 
Anthriscus sylvestris (L.) Hoffm. and 
Leucanthemum vulgare Lamk. 
Species-rich  mesotrophic  fen  meadow 
dominated by species like Caltha palustris 
L., swamp horsetail Equisetum fluvatile L., 
and many Carex-species 
Mesotrophic alder carr with dominance of 
Alnus glutinosa (L.) Gaertn. and a herblayer 
with Carex acutiformis Ehrh., Lycopus 
europaeus L. and Solanum dulcamara L.  
Fens with small Carex species as Carex 
panicea L., Carex rostrata Stokes and Carex 
nigra (L.) Reichard. 
Comparable with Caricion curto-nigrae but 
with higher proportion of Poaceae and 
higher  productivity 
Tall herb fen with Filipendula ulmaria (L.) 
Maxim., Valeriana officinalis L. and 
Alopecurus pratensis L. 
Sedge s wamp with various tall Carex 
species 
Magnocaricion vegetation with Phragmites 
australis (Cav.) Steud. 
Highly fertile reeds wamps, dominated by 
Phragmites australis (Cav.) Steud. 
Oligotrophic swamp forest with Betula 
pubescens Erhr. and Alnus glutinosae (L.) 
Gaertn., with a dense moss layer of 
Sphagnum palustre L. and Sphagnum 
fimbriatum Wilson. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.80 (170) 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.16 (79) 
 
 
 

1.12 (28) 
 
 

1.12 (28) 
 
 

4.76 (119) 
 
 
 
 
 
 
 

 
2.64 (66) 

 
 

 
2.80 (70) 

 
 
 
 

4.24 (106) 
 
 
 

1.20 (30) 
 
 
 
 
 
 
 
 
 

4.16 (104) 
 
 

2.52 (63) 
 

3.72 (93) 
 

2.12 (53) 

1.47 (147) 
 
 

0.91 (91) 
 
 
 
 

0.95 (95) 
 
 
 

1.41 (141) 
 
 
 
 
 
 
 
 
 

1.12 (112) 
 
 
 
 

0.83 (83) 
 

0.27 (27) 

ZB, Zwarte Beek; VB, Vorsdonkbos; DB, Doode Bemde; SG, Snoekengracht. 

 



 
 

 

 
 

Fig. 2 –  Predicted vegetation types with the multiple logistic regression model (a) and with the random forest model (b). The 
observed vegetation distribution (D) is overlaid with the predicted vegetation distribution (◦). For each grid cell, the 
vegetation type with the highest probability of occurrence, as modelled with the multiple logistic regression model (a) and 
with the random forest model (b), is the predicted vegetation type. 



 
 

ual members, is that the members of the ensemble perform 
better than random and are diverse (Hansen and Salamon, 
1990). Random forests increase diversity among the classifi- 
cation trees by resampling the data with replacement, and by 
randomly changing the predictive variable sets over the differ- 
ent tree induction processes. Each classification tree is grown 
using another bootstrap subset Xi of the original data set X 
and the nodes are split using the best split predictive variable 
among a subset of m randomly selected predictive variables 
(Liaw and Wiener, 2002). This is in contrast with standard clas- 
sification tree building, where each node is split using the best 
split among all predictive variables. The algorithm for growing 
a random forest of k classification trees goes as follows: 

 
(i) for i = 1 to k do: 

(1) draw a bootstrap subset Xi containing approximately 
2/3 of the elements of the original data set X; 

(2) use Xi to grow an  unpruned  classification  tree  to 
the maximum depth, with the following modification 
compared with standard classification tree building: at 
each node, rather than choosing the best split among 
all predictive variables, randomly select m predictive 
variables and choose the best split among these vari- 
ables; 

(ii) predict new data according to the majority vote of the 
ensemble of k trees. 

 
The number of trees (k) and the number of predictive 

variables used to split the nodes (m) are two user-defined 
parameters required to grow a random forest. Predictive vari- 
ables may be numerical or categorical, a translation to design  
variables is not needed. 

An unbiased estimate of the generalization error is 
obtained during the construction of a random forest by 

 
(i) for i = 1 to k do: 

(1) each tree is constructed using a different bootstrap 
sample Xi from the original data set X. Xi consists 
of about 2/3 of the elements of the original data set. 
The elements not included in Xi, called out-of-bag ele- 
ments, are not used in the construction of the ith tree; 

(2) these out-of-bag elements are classified by the final- 
ized ith tree. 

(ii) At the end of the run, on average each element of the 
original data set X is out-of-bag in one-third of the k tree 
constructing iterations. Or, each element of the original 

 
 

of each individual tree in the forest; and (ii) the correlation 
between any two trees in the forest. A classification tree with 
a low error is a strong classifier. Strength and correlation are 
not user-defined parameters. However, reducing the number 
of randomly selected predictive variables to split the nodes 
(m) decreases both strength and correlation. Decreasing the 
strength of the individual trees increases the forest error. 
Whereas decreasing the correlation decreases the forest error. 
Therefore m, which is a user-defined parameter, has to be opti- 
mized in order to get a minimal random forest error. 

Some additional information generated by random forests 
is useful for ecohydrological modelling. The random forest 
technique estimates the importance of a predictive variable 
by looking at how much the oob error increases when oob 
data for that variable are permuted while all other variables 
are left unchanged. The increase in oob error is proportional to 
the predictive variable importance. Another measure assesses 
the proximity of different data points to one another. An N × N 
(with N the number of data points) proximity matrix is gener- 
ated, with each element representing the fraction of trees in 
which the two corresponding data points fall in the same ter- 
minal node. The intuition is that similar data points should be 
in the same terminal node more often than dissimilar ones. 
Other measures and analysing options include variable inter- 
action, missing value replacement and unsupervised learning 
(see Breiman and Cutler (2004a)). The use of these features, 
however, is beyond the scope of this study. 

For random forest model development, Random Forests 
Version 5.1 (Breiman and Cutler, 2004b) was used. The ran- 
domForest package within the statistical software R 2.2.1 can 
also be used. 

 
2.4.       Training versus test data sets 

 
The lack of an independent data set for model evaluation 
forced us to randomly and uniformly split the ecohydrological 
data set L into two parts. In two-fold cross-validation each of 
the two parts is once used as training set and once as test set: 

Ltrain1  = Ltest2 of size 853, (5) 
 

Ltrain2  = Ltest1 of size 852. (6) 
 

Consequently, each element (xi, li) of the ecohydrological data 
set was once used as a training instance and once as a test 
instance. 

data set is classified by one-third of the k trees. The propor-    
tion of misclassifications (%) over all out-of-bag elements 
is called the out-of-bag (oob) error. 

 
The oob error is an unbiased estimate of the generaliza- 

tion error. Breiman (2001) proved that random forests produce 
a limiting value of the generalization error. As the number 
of trees increases, the generalization error always converges. 
The number of trees (k) needs to be set sufficiently high to 
allow for this convergence. Consequently random forests do 
not overfit. An upper bound of the generalization error can be 
derived in terms of two parameters that measure how accu- 
rate the individual classification trees are and how diverse 
different classification trees are (Breiman, 2001): (i) the strength 

3. Model construction, calibration and 
results 

 
3.1. Multiple logistic regression model 

 
The need to split the data set into two parts in order to cross-
validate the results, resulted in the construction of two 
multiple logistic regression models MLR1 and MLR2, con- 
structed on Ltrain1 and Ltrain2, respectively. Each of these 
models consisted of 11 submodels, i.e. logit link functions 
ĝ (x), one for each vegetation type. The submodels were con- 
structed separately using the S-plus software in two steps: 
(i) submodel construction using all 14 variables as first-order 



train1 

train2 

 
 

 
Table 2 – Model goodness-of-fit  
Vegetation type Dnull d.f. Dresid d.f. G= Dnull − Dresid d.f. Pearson resid. d.f. 

MLR1         
Alno–Padion 472.01 810 107.15∗ 789 364.86∗ 21 130.68∗ 789 
Arrhenatherion  elatioris 548.49 810 173.10∗ 791 375.39∗ 19 403.18∗ 791 
Calthion palustris 548.49 810 150.02∗ 793 398.47∗ 17 262.20∗ 793 
Carici elongatae–Alnetum glutinosae 665.72 810 354.11∗ 799 311.61∗ 21 364.39∗ 799 
Caricion curto-nigrae 581.79 810 0∗ 790 581.79∗ 20 0∗ 790 
Cirsio–Molinietum 124.92 810 0∗ 798 124.92∗ 12 0∗ 798 
Filipendulion 813.87 810 165.94∗ 794 647.93∗ 16 385.33∗ 794 
Phragmitetalia 282.24 810 95.07∗ 803 187.17∗ 7 89.31∗ 803 
Magnocaricion with Phragmites 539.91 810 133.25∗ 795 406.66∗ 15 176.49∗ 795 
Magnocaricion 300.75 810 69.06∗ 795 231.69∗ 15 92.14∗ 795 
Sphagno–Alnetum glutinosae 256.70 810 88.15∗ 800 168.55∗ 10 95.42∗ 800 

MLR2         
Alno–Padion 513.73 811 134.01∗ 789 379.72∗ 22 122.98∗ 789 
Arrhenatherion  elatioris 452.92 811 184.44∗ 788 268.48∗ 23 235.94∗ 788 
Calthion palustris 617.69 811 166.77∗ 796 450.92∗ 15 256.74∗ 796 
Carici elongatae–Alnetum glutinosae 683.70 811 388.31∗ 795 295.39∗ 16 384.82∗ 795 
Caricion curto-nigrae 609.93 811 13.62∗ 791 596.31∗ 20 15.18∗ 791 
Cirsio–Molinietum 141.45 811 22.30∗ 790 119.15∗ 21 25.31∗ 790 
Filipendulion 788.81 811 259.70∗ 791 529.11∗ 20 387.42∗ 791 
Phragmitetalia 236.89 811 69.49∗ 795 167.4∗ 16 84.85∗ 795 
Magnocaricion with Phragmites 222.39 811 133.25∗ 793 89.14∗ 18 254.34∗ 793 
Magnocaricion 318.85 811 84.48∗ 795 234.37∗ 16 109.50∗ 795 
Sphagno–Alnetum glutinosae 282.33 811 92.21∗ 789 190.12∗ 22 90.10∗ 789 

Dnull, deviance of the null model (constant only model); d.f., degrees of freedom; Dresid, residual deviance; G, the likelihood ratio test; Pearson 
resid., Pearson residuals. Significance at the 0.01 level (∗) are indicated. 

 
terms, and average groundwater depth, pH and Fe(tot) (which 
were identified as important predictive variables) as quadratic 
model terms, and (ii) bi-directional model term selection in 
a stepwise fashion using the AIC criterion. Casewise Pearson 
residual values (Hosmer and Lemeshow, 2000, p. 145) were 
used to identify anomalous elements in the training set (ele- 
ments with a Pearson residual > 15). These elements were 
excluded from the training set and the submodel building 

per grid cell, because the logit link functions ĝ (x) were calcu- 
lated separately for the 11 vegetation types. Based on a simple 
decision rule, i.e. for each grid cell, the vegetation type with the 
highest probability of occurrence is the predicted vegetation 
type, spatially distributed predictions of vegetation type occur- 
rences were made (Fig. 2(a)). Out of the 1705 grid cells, 1182 
(69.3%) were predicted correct, 524 (30.7%) incorrect. Despite 
its weaknesses (Vaughan and Ormerod, 2005), the Cohen’s K 

was repeated on the remaining training elements (L∗ = 811 test (Cohen, 1960) was used to evaluate differences between 
training elements, and L∗ = 812 training elements). Indica- observations and predictions. K values are negative when the 
tions on model goodness-of-fit are given in Table 2. Null model 
deviances (constant only model), residual deviances, likeli- 
hood ratio test G and Pearson deviances are tabulated for MLR1 
and MLR2. Since the deviance approximately follows a x2- 
distribution, this distribution is used to test upon. The residual 
deviances were all smaller than the corresponding x2-value 
at the 0.01 significance level. Therefore, the multiple logistic 
regression models were concluded to fit satisfactory (Neter et 
al., 1996). The same conclusion could be drawn based on the 
Pearson residuals. They proved a significant fit between obser- 
vations and fitted values. The likelihood ratio test statistic G 
indicated that the multiple logistic regression models includ- 
ing significant predictive variables (as determined by the AIC 
criterion) fitted the observed vegetation type distribution bet- 
ter than the constant only models at the 0.01 significance level. 

After model construction, MLR1 was applied to Ltest1, and 
MLR2 to Ltest2. The joint output of MLR1 and MLR2 included 
the probability of occurrence n̂ (x) for all 11 vegetation types 
for each measurement vector x in L and thus for each grid cell 
of the study area. The probabilities of occurrence n̂ (x) for the 
11 different vegetation types do not necessarily sum up to 1 

agreement between observations and predictions is worse 
than expected by chance, and reaches 1 in case of perfect 
agreement. A K value of 0.651 was found: there is a substantial 
agreement between observations and predictions (p < 0.001). 
Visual inspection of the results led to the conclusion that 
(i) predictions were good for sites with little vegetation type 
diversity (Zwarte Beek); (ii) considerable numbers of predic- 
tions did not coincide with observations for the other, more 
diverse sites; and (iii) within the diverse sites, predictions 
were much better for large homogeneous vegetation clusters 
(e.g. northern area of Vorsdonkbos). However, for small and 
isolated patches and for boundary grid cells between neigh- 
bouring vegetation types, predictions were less accurate. 

 
3.2. Random forest model 

 
The random forest technique has two important user-defined 
parameters: the number of trees (k) and the number of 
randomly selected variables to split the nodes (m). These 
parameters should be optimized in order to minimize the gen- 
eralization error. 



 
 

 
 

Fig. 3 – Out-of-bag (oob) error and test set error converge 
when more trees are added to the random forest. Ltrain1 
oob error and Ltrain2 oob error are the oob errors calculated 
during the construction of RF1 and RF2, respectively. Ltest1 
error and Ltest2 error are the test set error of RF1 and RF2 
applied to their respective test data sets. 

 
 

 
 

Breiman (2001) proved that random forests do not over- 
fit. A limiting value of the generalization error is obtained as 
more trees are added. Two random forest submodels RF1 and 
RF2 consisting of 1000 trees were constructed on Ltrain1 and 
Ltrain2, respectively, both with two randomly selected variables 
to split the nodes (m = 2). Fig. 3 presents the error in function 
of the number of trees. Two distinct forms of curves are dis- 
tinguishable: (i) oob error and (ii) test set error. RF1 oob error 
and RF2 oob error represent the oob error, which was proven 
to be a good estimator of the generalization error (Breiman, 
2001), in function of the number of trees. From approximately 
100 trees onwards, the oob error converged to about 20% for 
RF1, and to about 25% for RF2. Adding more trees did not 
decrease nor increase the oob error. The two other curves rep- 
resent the test set error in function of the number of trees. 
Test set error values for different numbers of trees were com- 
puted by applying RF1 and RF2 to Ltest1 and Ltest2, respectively, 
during the random forest building process, and represent the 

 
 

proportion of incorrectly predicted test set elements. Test set 
error values for both test sets were around 23% at the end 
of the random forests construction. Similarly as for the oob 
error, the test set error converged from 100 trees on. The 
conclusions that could be drawn from Fig. 3 are (i) the oob 
error is a suitable estimator to detect error convergence, (ii) 
in accordance with Breiman (2001) the random forest algo- 
rithm does not overfit: a limiting value for both oob error 
and test set error is produced, and (iii) 1000 trees can be con- 
cluded to be an appropriate size for both random forests in this 
study. 

As stated in the random forest description, an additional 
random factor is included in the random forest algorithm com- 
pared with usual classification tree building: at each node a 
random subset of m predictive variables has to be specified 
and the best splitting variable among those m is used to split 
the node. The value of m is constant during the forest grow- 
ing. It affects both the correlations between the trees and the 
strength of the individual trees. Reducing m reduces correla- 
tion and strength, increasing m increases both. Two random 
forests RF1 and RF2 were constructed for different values of 
m. Error values are tabulated in Table 3. Both the oob error 
for RF1 and RF2 constructed on Ltrain1 and Ltrain2, respectively, 
and test set errors for RF1 and RF2 applied to Ltest1 and Ltest2, 
respectively, are given. 

The oob error showed minimal values of 19.91% for RF1 
and 24.38% for RF2, both when m = 3. The test set error for 
RF1 applied to Ltest1 ranged between a minimum of 22.74% for 
m = 5 variables and a maximum of 25.32% for m = 14 variables. 
For RF2 applied to Ltest2 similar error values were found for the 
different m values. A minimum of 23.42% was found for m = 3 
and a maximum of 25.17% for m = 14. Overall, low oob error 
and test set error values were observed for m = 3. Therefore 
the oob error proved to be a good tool for optimizing m. In 
general little difference in error was found for m ∈ {2, 3, 4, 5, 8}. 
The optimal range of m was concluded to be quite wide (in 
accordance with Breiman and Cutler (2004a)). Nevertheless, it 
was decided to construct RF1 and RF2 with m = 3. 

Based on the above findings (i.e. 1000 is a suitable number of 
trees and m = 3 results in a minimal error), the random forest 
algorithm was run on Ltrain1 to create RF1 consisting of 1000 
classification trees with three random predictive variables to 
split the nodes (m = 3). The same was done on Ltrain2 to create 
RF2. Next, both random forests were applied to test data sets: 
RF1 on Ltest1 and RF2 on Ltest2. 

 
 

 

Table 3 – Oob error values for RF1 and RF2 built on Ltrain1 and Ltrain2, respectively. Test set error values for RF1 and RF2 
applied to Ltest1 and Ltest2, respectively 

 m 

1 2 3 4 5 8 11 14 

RF1a 21.78 20.26 19.91 20.37 20.61 20.02 20.37 21.19 
RF2a 26.73 24.62 24.38 24.85 24.62 24.38 24.62 24.38 
Ltest1  

b
 24.62 23.33 23.33 23.33 22.74 23.68 24.38 25.32 

Ltest2  
b

 25.06 23.77 23.42 23.77 24.24 24.36 24.71 25.17 

Minimal values are in italics. 
a  Oob error. 
b  Test set error. 



1,0.95 

 
 

Each measurement vector xi of the test sets was classified 
by each tree as a unique vegetation type. Consequently, each 
measurement vector xi of the test sets is classified 1000 times 
and the proportion of votes over all 1000 trees for a vegeta- 
tion type is interpreted as the probability of occurrence of that 
vegetation type: 

 
P(cj) = Ncj /Ntot, (7) 

 
where P(cj) is the probability of occurrence of vegetation type 
cj, Ncj the number of trees classifying the vegetation type as 
vegetation type cj, and Ntot the total number of classification 
trees in the random forest (here Ntot = 1000). 

This probability of occurrence was calculated for the 11 dif- 
ferent vegetation types for each grid cell in the four study sites. 
The same decision rule as in multiple logistic regression mod- 
elling was used: for each grid cell the vegetation type with the 
highest probability of occurrence is the predicted vegetation 
type. Predictions were correct in the central area of all vegeta- 

 
 

 

where N = n00 + n01 + n10 + n11 is the total number of elements 
in the ecohydrological data set. Under the null hypothesis, the 
two models should have the same error rate, which means that 
n01 = n10. McNemar’s test is based on a x2-test for goodness- 
of-fit that compares the distribution of counts under the null 
hypothesis to the observed counts. The following statistic is 
x2-distributed with 1 degree of freedom: 

 
(|n01 − n10|− 1) 

tion types (Fig. 2(b)). Predictions for grid cells at the boundary 
between different vegetation types and isolated cells were less 

M = 
n01 + n10 

. (8) 

accurate. Nonetheless, with 1307 (76.7%) correct predictions 
and 398 (23.3%) wrong predictions, the overall prediction accu- 
racy was better than the prediction accuracy of the multiple 
logistic regression model which made 1182 (69.3%) correct pre- 
dictions and 524 (30.7%) incorrect predictions. A K value of 
0.734 was found: there is a substantial agreement between 
observations and predictions (p < 0.001). This K value is higher 
than the one found for the multiple logistic regression model 
(0.651). 

 
 

4. Model evaluation 
 

4.1. Observed versus predicted 
 

The multiple logistic regression model and the random for- 
est model consisted of two submodels: MLR1 and MLR2, 
and RF1 and RF2, respectively. This split resulted from 
two-fold cross-validation. Vegetation type occurrences were 
predicted by applying MLR1 to Ltest1, MLR2 to Ltest2 and RF1 
to Ltest1, RF2 to Ltest2. From this point on, the joined pre- 
dictions of the  two  parts  of  each  model  will  be  referred 
to as predictions made by the multiple  logistic  regres- 
sion model and the predictions made by the random 
forest model. The performance of both models is dis- 
cussed in this model evaluation section using different 
techniques. 

 
4.1.1. McNemar test 
For L = Ltest1 ∪ Ltest2 (1705 elements spatially covering the 
whole study area) 1182 correct predictions were made by the 
multiple logistic regression model. The random forest model 
made 1307 correct predictions. Based on the conclusions of 
Dietterich (1998), the McNemar test (Everitt, 1992) was selected 
to compare the performances of the multiple logistic regres- 
sion model and the random forest model. Predictions made 
by both models for all cases of L (as presented in Fig. 2) were 

If the null hypothesis is correct, then the probability that this 
quantity is greater than x2 = 3.84 is less than 0.05. Over the 
entire study area n01 = 216 and n10 = 91. The value of the test 
statistic M was 50.1 (p < 0.001). The two models had signifi- 
cantly different performances at the 0.001 significance level. 
Inspecting the n01 and n10 values led to the conclusion that 
this significant difference in performance was due to a better 
performance of the random forest model compared with the 
multiple logistic regression model. 

 
4.1.2. Evaluation statistics for each vegetation type 
separately 
To assess and compare model performances for each individ- 
ual vegetation type, different test statistics were used. First, 
the McNemar test was used to identify differences in perfor- 
mance of both models for each vegetation type separately. 
Furthermore, predicted vegetation types by the two models 
were compared with observed vegetation types for the 11 veg- 
etation types separately using a confusion matrix (e.g. Fielding 
and Bell, 1997; Kohavi and Provost, 1998). Several standard 
terms have been defined for a confusion matrix (Fielding and 
Bell, 1997; Kohavi and Provost, 1998) of which following were 
used because of our main interest in correctly predicting pres- 
ences: 

 
(i) Precision, p (=positive predictive power): the proportion of pre- 

dicted presences that are observed to be present rather 
than absent, TP/(TP + FP); 

(ii) Recall,  r (=sensitivity,  =true positive rate):  the  proportion 
of  observed  presences  that  were  predicted  correctly, 
TP/(TP + FN). 

 
Precision and recall were combined by means of the ‘F- 

measure’ (Van Rijsbergen, 1979). A weighted version of the 
F-measure was used: 

 
(ˇ2 + 1)pr 

compared with the observations and used to construct the 
following contingency table: 

Fˇ(p, r) = 
ˇ2p + r 

, (9) 

2 



 
 

where ˇ ∈ ]0, +∞[ is a weighing factor that controls the relative 
importance of precision versus recall. For ˇ = 1, the F-measure 
is balanced, and precision and  recall  have  equal  importance. 
The  F-measures  used  were  F0.5  (precision  twice  as  important 
as recall), F1  (equal weights) and F2  (recall twice as important 
as precision). The  magnitude  of  F varies  from  0,  when  almost 
no correct predictions are made, to 1, when predictions and 
observations perfectly match. Moreover F is strongly oriented 
towards the lower of the two values p and r; therefore this 
measure can only be high when both p and r are high. 

Results of the McNemar test and values for precision, recall 
and the F-measure are summarized in Table 4 for the individ- 
ual vegetation types. The F-measures for the two models over 
all vegetation types were analysed using two test statistics: (i) 
a simple ranking and (ii) the Wilcoxon signed rank test. Sim- 
ple ranking assigned performance scores per vegetation type: 
2 for the best performing model and 1 for the worst and 1.5 
in case of a tie. After adding up those values for each of the 
F-measures, the highest scoring model was concluded to per- 
form best. The Wilcoxon signed rank test (Wilcoxon, 1945) is 
a non-parametric pairwise comparison test. It allows to test 
whether the median values of the different F-measures over 
the different vegetation types are identical for the two models. 

The McNemar test showed a significant difference in per- 
formance  between  the  multiple  logistic  regression  model 
and   the   random   forest   model   at   the   0.05   significance 
level for the vegetation types Arrhenatherion elatioris, Carici 
elongetae–Alnetum glutinosae, Caricion curto-nigrae, Filipendulion 
and Magnocaricion with Phragmites. These differences resulted 
from a better performance of the random forest model as can 
be seen from the n01 and n10 values in Table 4. The absence of 
significant differences between both models for the remaining 
vegetation types reflects comparable performances for both 
models due to a spatial distribution in large homogeneous 
areas for which predictions by both models are good (e.g. Calth- 
ion palustris, Phragmitetea) or due to spatial limitations of the 
vegetation type (e.g. Alno–Padion and Magnocaricion are only 
found at Snoekengracht and Doode Bemde, respectively). 

For precision and recall the same tendencies were notice- 
able for the two models. Precision for Sphagno–Alnetum 
glutinosae and Magnocaricion were low for both models, mean- 
ing that many cells with other vegetation types – mainly 
Carici elongetae–Alnetum glutinosae and Alno–Padion– were pre- 
dicted to be Spagno–Alnetum glutinosae and many cells – 
mainly Magnocaricion with Phragmites and Calthion palustris– 
were predicted to be Magnocaricion (see Fig. 2). This is 
somewhat understandable as these are spatially adjacent, 
comparable vegetation types with dominance of Alnus gluti- 
nosa (L.) Gaertn. in Sphagno–Alnetum glutinosae, Alno–Padion 
and Carici elongetae–Alnetum glutinosae, and the higher abun- 
dance of Phragmites australis as main difference between 
Magnocaricion and Magnocaricion with Phragmites. Recall was 
lowest for Sphagno–Alnetum glutinosae and Magnocaricion for 
the multiple logistic regression and the random forest 
model. In Fig. 2 the large number of wrong predictions for 
Sphagno–Alnetum glutinosae and Magnocaricion in Vorsdonkbos 
and Doode Beemde are clearly noticeable. A similar expla- 
nation as for precision might be given. Many grid cells with 
observed Sphagno–Alnetum glutinosae and Magnocaricion vege- 
tation were predicted to be the related vegetation type Carici 

 
 

elongetae–Alnetum glutinosae and Magnocaricion with Phragmites, 
respectively. Both models had high precision and recall for 
Caricion curto-nigrae probably resulting from well-defined dif- 
ferences of the environmental conditions (marked lower Mg2+, 
Ca2+ and Cl− concentrations). 

The stated findings for precision and recall were reflected 
in the F-measures. F1-values ranged between 0.45 and 0.91 
for the multiple logistic regression model and between 0.56 
and 0.95 for the random forest model. One-by-one comparison 
showed a better performance of the random forest model for 
all three F-measures for each of the 11 vegetation types. Based 
on the simple ranking statistic, all three F-measures were 
found to be better for the random forest model (11 for the mul- 
tiple logistic regression model versus 22 for the random forest 
model). The Wilcoxon signed rank test statistic indicated sig- 
nificantly better performances for all three F-measures for the 
random forest model compared to the multiple logistic regres- 
sion model at the 0.01 significance level (p = 0.003). 

 
4.2. Prediction probabilities 

 
4.2.1. Threshold-dependent evaluation 
The multiple logistic regression model and the random for- 
est model computed the probabilities of occurrence for each 
individual vegetation type for each spatially distributed grid 
cell. Probability distributions for correct predictions and incor- 
rect predictions gave an indication of the strength of the 
predictions (Fig. 4). Correct predictions were made with high 
probability, especially for the MLR model: half of the correct 
MLR model predictions had probabilities higher than 0.9, while 
one-third of the correct RF model predictions had probabili- 
ties higher than 0.9. A visual inspection of the probabilities 
underlying each prediction (not shown) indicated that cor- 
rect predictions with high probabilities were found in the 
central areas of homogeneous vegetation clusters. Probabil- 
ities decreased towards the margins of those areas. Incorrect 
prediction probabilities tended to be rather high for the MLR 
model, with almost 20% of the incorrect predictions having 
higher probabilities than 0.9. Incorrect RF model prediction 
probabilities showed a maximum in the ]0.4,0.5] interval indi- 
cating that incorrect predictions are mainly made for grid cells 
with several vegetation types with comparable, low to mod- 
erate probabilities. Only 2% of the incorrect predictions had 
probabilities higher than 0.9. Spatial identification of these 
grid cells indicated them as isolated vegetation types, sur- 
rounded by other vegetation types. 

 
4.2.2. Threshold-independent evaluation 
Receiver operating characteristic (ROC) curves are frequently 
used for the evaluation of classification accuracy. This curve, 
originating from signal detection theory, is widely used in 
clinical sciences, but recently also in earth sciences (Guisan 
and Zimmerman, 2000; Pontius and Schneider, 2001; Boyce et 
al., 2002; Liu et al., 2005; Phillips et al., 2006). In ROC space, 
one plots the false positive rate (FPR) on the x-axis and the 
true positive rate (TPR, =recall) on the y-axis. The FPR (FP/(FP 
+TN)) measures the fraction of negative grid cells (i.e. vege- 
tation type absent) that are incorrectly predicted as positive 
(i.e. vegetation type present). The TPR (TP/(TP +FN)) measures 
the fraction of positive grid cells that are predicted correctly. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 – McNemar test; precision, recall, F0.5, F1, F2 for MLR and RF 

 Vegetation type 

Alno– 
Padion 

Arrhenatherion 
elatioris 

Calthion 
palustris 

Carici Caricion 
elongetae–Alnetum    curto-nigrae 

glutinosae 

Cirsio– 
Molinietum 

Filipendulion Magnocaricion Magnocaricion 
with Phragmites 

Phragmitetea Sphagno–Alnetum 
glutinosae 

McNemar test n y n y y n y n y n n 
n01 9 22 12 69 10 3 28 11 38 5 9 
n10 7 9 14 16 2 1 14 6 11 6 5 

MLR            
Precision 0.70 0.56 0.74 0.57 0.91 0.51 0.78 0.50 0.69 0.66 0.48 
Recall 0.76 0.55 0.78 0.54 0.91 0.75 0.81 0.46 0.60 0.68 0.42 
F0.5 0.71 0.56 0.75 0.57 0.91 0.55 0.78 0.49 0.67 0.66 0.47 
F1 0.73 0.56 0.76 0.56 0.91 0.61 0.79 0.48 0.64 0.67 0.45 
F2 0.74 0.55 0.77 0.55 0.91 0.69 0.80 0.47 0.61 0.67 0.43 

RF            
Precision 0.73 0.69 0.80 0.67 0.95 0.79 0.85 0.54 0.70 0.79 0.67 
Recall 0.77 0.63 0.77 0.75 0.95 0.82 0.85 0.54 0.75 0.66 0.48 
F0.5 0.74 0.68 0.79 0.69 0.95 0.80 0.85 0.54 0.71 0.76 0.62 
F1 0.75 0.66 0.78 0.71 0.95 0.81 0.85 0.54 0.73 0.72 0.56 
F2 0.76 0.64 0.77 0.74 0.95 0.82 0.85 0.54 0.74 0.68 0.51 

McNemar test: y, significant difference in performance between the MLR model and the RF model; n, no significant difference, both at the 0.05 significance level. n01 and n10 are error rates of the MLR 
model and the RF model, respectively to calculate the McNemar test statistic M, see Eq. (8). 
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Fig. 4 – Probability distributions of predictions made with 
the multiple logistic regression model (a) and the random 
forest model (b). 

 
 

 
The multiple logistic regression model and the random for- 
est model computed the probabilities of occurrence of 11 
vegetation types. Earlier we used the decision rule that the 
most probable vegetation type (among the 11 possible vege- 
tation types) is the predicted one. Here, in order to construct 
ROC curves for each vegetation type separately, the modelled 
probabilities of occurrence are used to construct several con- 
fusion matrices, one for each possible cutpoint. A cutpoint 
represents a threshold probability above which the vegeta- 
tion type is modelled to be present. The curve generated by 
plotting the TPR versus the FPR for all possible cutpoints is 
the ROC curve. The area under the ROC curve (AUC), which 
ranges from zero to one, provides a measure of the ability 
of the model to discriminate between grid cells where the 
vegetation type of interest is present versus absent (Hosmer 
and Lemeshow, 2000). AUC describes the likelihood that the 
observed vegetation type for a grid cell has a higher mod- 
elled probability of occurrence in comparison with grid cells 

 
 

Table 5 – Area under ROC curves for the MLR and the RF 
model 

Vegetation type MLR model RF model 

Alno–Padion 0.967* 0.983* 

Arrhenatherion  elatioris 0.920* 0.950* 

Calthion palustris 0.927* 0.981* 

Carici elongatae–Alnetum glutinosae 0.880* 0.949* 

Caricion curto-nigrae 0.969* 0.999* 

Cirsio–Molinietum 0.758* 0.886* 

Filipendulion 0.923* 0.977* 

Phragmitetalia 0.904* 0.963* 

Magnocaricion with Phragmites 0.910* 0.969* 

Magnocaricion 0.968* 0.983* 

Sphagno–Alnetum glutinosae 0.950* 0.982* 

∗  Using the model for predicting vegetation type occurrence is bet- 
ter than random guessing at the 0.001 significance level. 

 
where the vegetation type is absent. Both models had high 
AUC-values, reflecting their excellent discrimination abilities 
(Table 5). Alno–Padion for example, has an AUC-value of 0.967 
under the multiple logistic regression model, strongly indi- 
cating that grid cells in the study area where the Alno–Padion 
vegetation is present have a higher modelled probability of 
Alno–Padion occurrence than grid cells where Alno–Padion is 
absent. The Wilcoxon signed rank statistic indicated signifi- 
cantly higher median AUC-values for the random forest model 
at the 0.01 significance level. 

 
 

5. Discussion and conclusions 
 

5.1. Statistical model comparison 
 

This study presented an application of two different predic- 
tive ecohydrological distribution models. The first model used 
the widely applied multiple logistic regression technique, and 
the second model a recently developed ensemble learning 
technique called random forest. Both models calculated the 
probability of occurrence of 11 different vegetation types, on 
which the prediction of the spatial vegetation distribution was 
based. An ecohydrological data set with hydrogeochemical 
variables and related vegetation types for Flemish lowland 
valley ecosystems was randomly and uniformly split into two 
training data sets for two-fold cross-validation of both models. 
After model construction and calibration, the prediction accu- 
racy of both models was assessed and compared. Following 
conclusions could be drawn: 

 
(1) The multiple logistic regression model made 69.3% cor- 

rect predictions and the random forest model 76.7%. The 
McNemar test statistic indicated a difference in perfor- 
mance between the models at the 0.001 significance level 
(p < 0.001). Inspection of the results assigned this differ- 
ence to a better performance of the random forest model 
compared to the multiple regression model. 

(2) The overall better performance of the random forest 
model could be assigned to significantly higher propor- 
tion of correct predictions for Arrhenatherion elatioris, Carici 
elongetae–Alnetum glutinosae, Caricion curto-nigrae, Filipen- 
dulion and Magnocaricion with Phragmites (see Table 4). 



 
 

 

(3) The F-measures, which combines precision and recall, 
were significantly better for the random forest model. 

(4) The multiple logistic regression model made correct pre- 
dictions with higher probabilities than the random forest 
model (Fig. 4). Unfortunately, the incorrect predictions 
were also made with high probabilities. The random forest 
model made incorrect predictions with lower probabili- 
ties, which indicated that the model misclassified grid 
cells where several vegetation types were expected, all 
with comparable, moderately low probabilities. Both mod- 
els predicted central areas of homogeneous areas correctly 
with high probabilities, and isolated grid cells incorrectly 
with high probabilities. 

(5) Model accuracy was assessed by means of ROC curves 
for the vegetation types separately. The area under the 
curves (AUC) was high for both models, they were both 
much better for predicting vegetation occurrence than 
random guessing (p < 0.001). Although both models per- 
formed well, the random forest model was found to have 
higher discriminative power than the multiple logistic 
regression model at the 0.01 significance level. 

 
The overall conclusion of this study is that the random 

forest modelling technique has the ability to lead to better 
predictive ecohydrological models. 

 
5.2. Putting the random forest model in a broader 
perspective 

 
Major applications of the random forest classifier are found 
in bio-informatics and genetics (e.g. Diaz-Uriate and de  
Andres, 2006; Chen and Liu, 2006) and within the earth- 
sciences in remote sensing (e.g. Pal, 2005; Ham et al., 2005; 
Gislason et al., 2006). However, no example of the use of 
the random forest technique in ecological distribution mod- 
elling was found, and therefore comparison possibilities with 
literature were few. Nevertheless, general remarks on the 
random forest model should put its implementation within 
a broader perspective. As the random forest models sta- 
tistically relate the occurrence of vegetation types to their 
present environment, the incorporation of functional rela- 
tionships between environmental gradients and vegetation 
type distribution is not straightforward, and only partly possi- 

the model will gain robustness and extend its range of 
applicability. 

However, even if only proximal gradients were used in this 
modelling exercise, predictions would not completely fit the 
observations since ecological processes such as competition, 
predation and dispersal and other spatially autocorrelated 
features were not included. These processes tend to be hard 
to introduce into predictive models (Guisan and Thuiller, 
2005) because actual vegetation type distribution is a result of 
both environmental conditions and ecological processes and 
their relative importance is hard to capture. Consequently, 
predictions made by the presented models are rather to be 
interpreted as habitat suitability maps for the different vege- 
tation types (Franklin, 2000). 

In order to gain functionality of the random forest model, 
further research should focus on its modelling ability with 
smaller data subsets, comprising uncorrelated (most likely) 
proximal predictive variables. There are several reasons to do 
so (Mac Nally, 2000): (i) the model will gain robustness, with 
higher confidence on future predictions, (ii) some causal rela- 
tionships can possibly be indicated and (iii) the utilization of 
the model would become less costly. Furthermore, model gen- 
erality should be tested on a spatially independent data set 
since the use of accuracy estimates based on two-fold cross- 
validation data and on spatially independent evaluation data 
tend to differ (Edwards et al., 2006). 
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