Disease transmission can occur at live animal markets, but zoonotic disease research could benefit from an emphasis on humans’ and animals’ shared risk of infection.
across currently siloed efforts in zoonotic research and mitigation. To achieve comprehensive decentralized pathogen surveillance, there is an urgent need to develop environmental and biodiversity infrastructure in biodiverse countries experiencing high rates of habitat conversion, wildlife trafficking, and human-wildlife interactions.

Approximately one-third of One Health networks lack an environmental component, fewer than half are active in wildlife surveillance, and almost none is led by developing countries (1). International support for development of natural history museums with frozen vertebrate tissue collections remains a key component missing from the One Health equation. Most pathogens causing severe outbreaks in humans are zoonotic in origin (2); thus, understanding their evolution and that of their wild animal hosts is imperative.

As was the case for the coronavirus disease 2019 (COVID-19) (3), identifying wild animal reservoirs can be challenging when biorepositories are lacking (4). In most countries, natural history biorepositories remain poorly supported and largely disconnected from public health initiatives. For example, most studies of bat coronaviruses to date (5), including the PREDICT animal surveys discussed in Watts et al., did not preserve host specimens or tissues, thus limiting the potential for molecular host identification or replication and extension of the science (6). Emerging infectious disease response hinges on sampling depth across space, time, and taxonomy, the very sampling enabled by museum biorepositories. As primary biological infrastructure, in-country development of museum collections that follow best practices (7), with specimen data freely available through the internet, should be an interna-
tional imperative (8) for effective global surveillance and mitigation of emerging infectious diseases.


Biodiversity Institute of Kansas, Lawrence, KS 66045 USA. 2National Museums of Kenya, Nairobi, Kenya. 3Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia. 4Field Museum, Chicago, IL 60605, USA. 5Natural Science Collections Alliance, Washington, DC 20005, USA. 6Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador. 7Museum of Southwestern Biology and Biology Department, University of New Mexico, Albuquerque, NM 87121, USA. 8Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA. 9Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA. 10Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of Congo. 11Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. 12Florida Museum of Natural History and the University of Florida Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA. 13Department of Ecology and Evolutionary Biology and the Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA. 14Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. 15Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic. 16Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium. 17Department of Forestry and Wildlife Management, Masai Mara University, Narok, Kenya. 18Department of Vertebrates, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

*Corresponding author. Email: cookjose@unam.edu

REFERENCES AND NOTES

9. 10.1126/science.abd7707 (2020).

Response

We agree with Vanhove et al. that wildlife conservation and emerging infectious disease screening are two sides of the same coin. Wildlife and humans can be vulnerable to spillover events by the same pathogen. For example, respiratory diseases (1) and Ebola virus (2) outbreaks have occurred simultaneously in great apes and humans. Pathogens also affect biogeographical species range expansions, contractions, and extinctions (3). Biosurveillance efforts should reflect that health risks are shared by humans and wildlife, a central tenet of the One Health framework (4). As Vanhove et al. point out, wildlife can serve as the source for preventive solutions that mitigate spillover risks into humans and animals.

A shared risk perspective could also combat the narratives that portray animals as dangerous pests or disposable commodities that endanger human health (5), as in the case of bats (6), many of which are likely not hosts for coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (7). In addition to emphasizing shared risk, such misinformation can be countered with well-researched messaging following a zoonotic outbreak. Conservation social science has honed a suite of tools to identify the often unpredictable human motivations behind (8), and the possible negative consequences of, such communications (9).

Colella et al. suggest that surveillance efforts should include natural history collections. Some natural history museums and zoo archives biobanked specimens, cryopreserved viable cell cultures, disease specimen banks, and histopathology samples, but this highly effective practice (10) is limited by high costs. We agree that devoting funding toward biodiversity banking within countries at high risk for emerging infectious diseases would improve conservation outcomes. Taxonomically diverse biobanked tissues and live cell cultures could expand studies of host-pathogen relationships, clarifying host range or affected tissues and providing in vitro systems for infectivity and pathogenicity investigations. Such collections could also drug development for humans to expand beyond just a few animal laboratory models, given that relatively well-studied viruses such as SARS-CoV-2 are potentially broadly infectious across taxonomic orders (11). Comparative genomics and transcriptomics among nonmodel species are used infrequently in biomedical research programs but hold great potential for prioritizing species and gene targets with alternative host defense mechanisms for laboratory study (12).

Mrlinali Watts2,3 and Wildlife Disease Surveillance Focus Group

1Population Sustainability, San Diego Zoo Global, San Diego, CA 92027, USA. 2Field Projects International, San Diego, CA 92126, USA. 3Wildlife Disease Surveillance Focus Group authors and affiliations are listed at science.sciencemag.org/content/369/6500/145/suppl/DC1.

*Corresponding author. Email: merkenswicksatwa@sandiegozoo.org

REFERENCES AND NOTES

5. J. P. Kibambe et al., “In Africa, wildlife raises the risk of deadly diseases: It doesn’t have to” (CNN) (2020).
12. L. Yurkovskiy et al., Cell 183, 739 (2020).

10.1126/science.abe9392

774 13 NOVEMBER 2020 • VOL 370 ISSUE 6518
EcoHealth reframing of disease monitoring
Maarten P.M. Vanhove, Jean Hugé, Luc Janssens de Bisthoven, Hans Keune, Anne Laudisoit, Séverine Thys, Erik Verheyen and Nicolas Antoine-Moussiaux

Science 370 (6518), 773.
DOI: 10.1126/science.abe8239